In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that the continuity assumption on the nonlinear term of these equations is insufficient, give the derived expression for the solution, and present two results about the existence and uniqueness of the solution. We examined the case of impulsive impact and provide some sufficiency conditions for the existence and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of anti-periodic solution for the studied problems and considered the problem when the right-hand side was a multivalued function. Examples were given to illustrate the obtained results.
Citation: Muneerah Al Nuwairan, Ahmed Gamal Ibrahim. Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $ in infinite dimensional Banach spaces[J]. AIMS Mathematics, 2024, 9(4): 10386-10415. doi: 10.3934/math.2024508
In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that the continuity assumption on the nonlinear term of these equations is insufficient, give the derived expression for the solution, and present two results about the existence and uniqueness of the solution. We examined the case of impulsive impact and provide some sufficiency conditions for the existence and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of anti-periodic solution for the studied problems and considered the problem when the right-hand side was a multivalued function. Examples were given to illustrate the obtained results.
[1] | V. E. Tarasov, Applications in physics, part A, In: Handbook of fractional calculus with applications, De Gruyter, 4 (2019). https://doi.org/10.1515/9783110571707 |
[2] | D. Baleanu, A. M. Lopes, Applications in engineering, life and social sciences, part A, In: Handbook of fractional calculus with applications, De Gruyter, 7 (2019). https://doi.org/10.1515/9783110571905 |
[3] | B. F. Martínez-Salgado, R. Rosas-Sampayo, A. Torres-Hernández, C. Fuentes, Application of fractional calculus to oil industry, In: Fractal analysis applications in physics, engineering and technology, 2017. https://doi.org/10.5772/intechopen.68571 |
[4] | G. U. Varieschi, Applications of fractional calculus to Newtonian Mechanics, J. Appl. Math. Phys., 6 (2018), 1247–1257. https://doi.org/10.4236/jamp.2018.66105 doi: 10.4236/jamp.2018.66105 |
[5] | J. F. Douglas, Some applications of fractional calculus to polymer science, In: Advances in chemical physics, 102 (1997). https://doi.org/10.1002/9780470141618.ch3 |
[6] | M. Al Nuwairan, Bifurcation and analytical solutions of the space-fractional stochastic schrödinger equation with white noise, Fractal Fract., 7 (2023), 157. https://doi.org/10.3390/fractalfract7020157 doi: 10.3390/fractalfract7020157 |
[7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Elsevier, 2006. |
[8] | A. Aldhafeeri, M. Al Nuwairan, Bifurcation of some novel wave solutions for modified nonlinear Schrödinger equation with time M-fractional derivative, Mathematics, 11 (2023), 1219. https://doi.org/10.3390/math11051219 doi: 10.3390/math11051219 |
[9] | M. Almulhim, M. Al Nuwairan, Bifurcation of traveling wave solution of Sakovich equation with beta fractional derivative, Fractal Fract., 7 (2023), 372. https://doi.org/10.3390/fractalfract7050372 doi: 10.3390/fractalfract7050372 |
[10] | M. Arfan, K. Shah, T. Abdeljawad, N. Mlaiki, A. Ullah, A Caputo power law model predicting the spread of the COVID-19 outbreak in Pakistan, Alex. Eng. J., 60 (2021), 447–456. https://doi.org/10.1016/j.aej.2020.09.011 doi: 10.1016/j.aej.2020.09.011 |
[11] | S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Soliton Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256 |
[12] | A. I. K. Butt, M. Imran, S. Batool, M. Al Nuwairan, Theoretical analysis of a COVID-19 CF-fractional model to optimally control the spread of pandemic, Symmetry, 15 (2023), 380. https://doi.org/10.3390/sym15020380 doi: 10.3390/sym15020380 |
[13] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[14] | A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[15] | K. A. Abro, A. Atangana, A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Math. Meth. Appl. Sci., 43 (2020), 9681–9691. https://doi.org/10.1002/mma.6638 doi: 10.1002/mma.6638 |
[16] | B. Ghanbari, A. Atangana, A new application of fractional Atangana-Baleanu derivatives: Designing ABC-fractional masks in image processing, Physica A, 542 (2020), 123516. https://doi.org/10.1016/j.physa.2019.123516 doi: 10.1016/j.physa.2019.123516 |
[17] | M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033 |
[18] | D. Baleanu, M. Inc, A. Yusuf, A. Aliyu, Optimal system, nonlinear self-adjointness and conservation law for generalized shallow water wave equation, Open Phys., 16 (2018), 364–370. https://doi.org/10.1515/phys-2018-0049 doi: 10.1515/phys-2018-0049 |
[19] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. http://dx.doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20 |
[20] | T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5 |
[21] | M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 2021 (2021), 37. https://doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6 |
[22] | F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006 |
[23] | Asma, S. Shabbir, K. Shah, T. Abdeljawad, Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative, Adv. Differ. Equ., 2021 (2021), 395. https://doi.org/10.1186/s13662-021-03551-1 doi: 10.1186/s13662-021-03551-1 |
[24] | A. Devi, A. Kumar, Existence and uniqueness results for integro fractional differential equations with Atangana-Baleanu fractional derivative, J. Math. Ext., 15 (2021). |
[25] | M. Al Nuwairan, A. G. Ibrahim, Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces, AIMS Mathematics, 8 (2023), 11752–11780. https://doi.org/10.3934/math.2023595 doi: 10.3934/math.2023595 |
[26] | X. Liu, G. Ballinger, Boundedness for impulsive delay differential equations and applications in populations growth models, Nonlinear Anal. Theor., 53 (2003), 1041–1062. https://doi.org/10.1016/S0362-546X(03)00041-5 doi: 10.1016/S0362-546X(03)00041-5 |
[27] | K. Church, Applications of impulsive differential equations to the control of malaria outbreaks and introduction to impulse extension equations: A general framework to study the validity of ordinary differential equation models with discontinuities in state, University of Ottawa, 2014. https://doi.org/10.20381/RUOR-6771 |
[28] | H. F. Xu, Q. X. Zhu, W. X. Zheng, Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses, IEEE Trans. Autom. Control, 2023. https://doi.org/10.1109/TAC.2023.3335005 |
[29] | A. G. Ibrahim, Differential equations and inclusions of fractional order with impulse effect in Banach spaces, Bull. Malays. Math. Sci. Soc., 43 (2020), 69–109. https://doi.org/10.1007/s40840-018-0665-2 doi: 10.1007/s40840-018-0665-2 |
[30] | J. R. Wang, A. G. Ibrahim, D. O'Regan, Nonemptyness and compactness of the solution set for fractional evolution inclusions with non-instantaneous impulses, Electron. J. Differ. Eq., 2019 (2019), 1–17. |
[31] | J. R. Wang, A. G. Ibrahim, D. O'Regan, A. A. Elmandouh, Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses of order $ \alpha \in (1, 2)$, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 593–605. https://doi.org/10.1515/ijnsns-2019-0179 doi: 10.1515/ijnsns-2019-0179 |
[32] | R. Agarwal, S. Hristova, D. O'Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097–3119. https://doi.org/10.1016/j.jfranklin.2017.02.002 doi: 10.1016/j.jfranklin.2017.02.002 |
[33] | K. Liu, Stability analysis for $(w, c)$-periodic non-instantaneous impulsive differential equations, AIMS Mathematics, 7 (2022), 1758–1774. https://doi.org/10.3934/math.2022101 doi: 10.3934/math.2022101 |
[34] | E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal. Real World Appl., 13 (2012), 1489–1497. https://doi.org/10.1016/j.nonrwa.2011.11.013 doi: 10.1016/j.nonrwa.2011.11.013 |
[35] | Y. Alruwaily, S. Aljoudi, L. Almaghamsi, A. Ben Makhlouf, N. Alghamdi, Existence and uniqueness results for different orders coupled system of fractional integro-differential equations with anti-periodic nonlocal integral boundary conditions, Symmetry, 15 (2023), 182. https://doi.org/10.3390/sym15010182 doi: 10.3390/sym15010182 |
[36] | R. P. Agarwal, B. Ahmad, A. Alsaedi, Fractional-order differential equations with anti-periodic boundary conditions: A survey, Bound. Value Probl., 2017 (2017), 173. https://doi.org/10.1186/s13661-017-0902-x doi: 10.1186/s13661-017-0902-x |
[37] | B. Ahmad, Y. Alruwaily, A. Alsaedi, J. J. Nieto, Fractional integro-differential equations with dual anti-periodic boundary conditions, Differ. Integral Equ., 33 (2020), 181–206. https://doi.org/10.57262/die/1584756018 doi: 10.57262/die/1584756018 |
[38] | B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Bound. Value Probl., 2009 (2009), 625347. https://doi.org/10.1155/2009/625347 doi: 10.1155/2009/625347 |
[39] | A. G. Ibrahim, Fractional differential inclusions with anti-periodic boundary conditions in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 65 (2014), 1–32. https://doi.org/10.14232/ejqtde.2014.1.65 doi: 10.14232/ejqtde.2014.1.65 |
[40] | J. R. Wang, A. G. Ibrahim, M. Feckan, Differential inclusions of arbitrary fractional order with anti-periodic conditions in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 34 (2016), 1–22. https://doi.org/10.14232/ejqtde.2016.1.34 doi: 10.14232/ejqtde.2016.1.34 |
[41] | T. Abdeljawad, S. T. M. Thabet, T. Kedim, M. I. Ayari, A. Khan, A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality, Bound. Value Probl., 2023 (2023), 49. https://doi.org/10.1186/s13661-023-01736-z doi: 10.1186/s13661-023-01736-z |
[42] | K. K. Saha, N. Sukavanam, S. Pan, Existence and uniqueness of solutions to fractional differential equations with fractional boundary conditions, Alex. Eng. J., 72 (2023), 147–155. https://doi.org/10.1016/j.aej.2023.03.076 doi: 10.1016/j.aej.2023.03.076 |
[43] | K. Diethelm, V. Kiryakova, Y. Luchko, J. A. Tenreiro Machado, V. E. Tarasov, Trends, directions for further research, and some open problems of fractional calculus, Nonlinear Dyn., 107 (2022), 3245–3270. https://doi.org/10.1007/s11071-021-07158-9 doi: 10.1007/s11071-021-07158-9 |
[44] | W. Saleh, A. Lakhdari, A. Kilicman, A. Frioui, B. Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended $(s, m)$-prequasiinvex mixed partial derivatives, Alex. Eng. J., 72 (2023), 261–267. https://doi.org/10.1016/j.aej.2023.03.080 doi: 10.1016/j.aej.2023.03.080 |
[45] | M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana-Baleanu fractional derivative: Analysis and applications, Chaos Soliton Fract., 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013 |
[46] | S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palermo II Ser., 71 (2022), 647–663. https://doi.org/10.1007/s12215-021-00622-w doi: 10.1007/s12215-021-00622-w |
[47] | T. Cardinali, P. Rubbioni, Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces, Nonlinear Anal. Theor., 75 (2012), 871–879. https://doi.org/10.1016/j.na.2011.09.023 doi: 10.1016/j.na.2011.09.023 |
[48] | M. I. Kamenskii, V. V. Obukhowskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, 2001. https://doi.org/10.1515/9783110870893 |
[49] | D. Bothe, Multivalued perturbation of m-accerative differential inclusions, Israel J. Math. 108 (1998), 109–138. https://doi.org/10.1007/BF02783044 |
[50] | S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, In: Mathematics and its applications, New York: Springer, 1997. |
[51] | C. Rom, On Lipschitz selections of multifunctions with decomposable values, Bulletin Polish Acad. Sci. Math., 57 (2009), 121–127. |