Research article

Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel

  • Received: 12 August 2022 Revised: 04 September 2022 Accepted: 14 September 2022 Published: 16 September 2022
  • MSC : 35J10, 35C08, 35A18, 34A08

  • In the existing article, the existence of solutions to nonlinear fractional differential inclusions in the sense of the Atangana-Baleanu-Caputo ($ \mathcal{ABC} $) fractional derivatives in Banach space is studied. The investigation of the main results relies on the set-valued issue of Mönch fixed point theorem incorporated with the Kuratowski measure of non-compactness. A simulated example is proposed to explain the obtained results.

    Citation: Mohamed I. Abbas, Maria Alessandra Ragusa. Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel[J]. AIMS Mathematics, 2022, 7(11): 20328-20340. doi: 10.3934/math.20221113

    Related Papers:

  • In the existing article, the existence of solutions to nonlinear fractional differential inclusions in the sense of the Atangana-Baleanu-Caputo ($ \mathcal{ABC} $) fractional derivatives in Banach space is studied. The investigation of the main results relies on the set-valued issue of Mönch fixed point theorem incorporated with the Kuratowski measure of non-compactness. A simulated example is proposed to explain the obtained results.



    加载中


    [1] M. I. Abbas, M. A. Ragusa, Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions, Appl. Anal., 101 (2022), 3231–3245. https://doi.org/10.1080/00036811.2020.1839645 doi: 10.1080/00036811.2020.1839645
    [2] M. I. Abbas, M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 264. https://doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264
    [3] M. I. Abbas, S. Hristova, Existence results of nonlinear generalized proportional fractional differential inclusions via the diagonalization technique, AIMS Math., 6 (2021), 12832–12844. https://doi.org/10.3934/math.2021740 doi: 10.3934/math.2021740
    [4] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
    [5] B. Ahmad, A. Alsaedi, S. K. Ntouyas, H. H. Al-Sulami, On neutral functional differential inclusions involving Hadamard fractional derivatives, Mathematics, 7 (2019). https://doi.org/10.3390/math7111084
    [6] B. Alqahtani, S. Abbas, M. Benchohra, S. S. Alzaid, Fractional $q$-difference inclusions in Banach spaces, Mathematics, 8 (2020). https://doi.org/10.3390/math8010091
    [7] B. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 547–551. https://doi.org/10.1016/j.chaos.2016.03.020 doi: 10.1016/j.chaos.2016.03.020
    [8] M. M. Arjunan, V. Kavitha, D. Baleanu, A new existence results on fractional differential inclusions with state-dependent delay and Mittag-Leffler kernel in Banach space, An. Şt. Univ. Ovidius Constanţa, 30 (2022), 5–24. https://doi.org/10.2478/auom-2022-0016
    [9] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [10] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernal: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [11] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [12] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, World Scientific, Singapore, 2012.
    [13] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
    [14] J. $\text{ Banas̀ }$, T. Zając, On a measure of noncompactness in the space of regulated functions and its applications, Adv. Nonlinear Anal., 8 (2019), 1099–1110. https://doi.org/10.1515/anona-2018-0024 doi: 10.1515/anona-2018-0024
    [15] J. $\text{ Banas̀ }$, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980.
    [16] M. Benchohra, J. R. Graef, N. Guerraiche, S. Hamani, Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line, AIMS Math., 6 (2021), 6278–6292. https://doi.org/10.3934/math.2021368 doi: 10.3934/math.2021368
    [17] M. Benchohra, S. Hamani, Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. Method. Nonl. An., 32 (2008), 115–130.
    [18] M. Benchohra, N. Hamidi, J. J. Nieto, Existence of solutions to differential inclusions with fractional order and impulses, Electron. J. Qual. Theo., 80 (2010), 1–18.
    [19] M. Benchohra, J. Henderson, D. Seba, Boundary value problems for fractional differential inclusions in Banach space, Fract. Differ. Calc., 2 (2012), 99–108. https://doi.org/10.7153/fdc-02-07 doi: 10.7153/fdc-02-07
    [20] A. Das, B. Hazarika, V. Parvaneh, M. Mursaleen, Solvability of generalized fractional order integral equations via measures of noncompactness, Math. Sci., 15 (2021), 241–251. https://doi.org/10.1007/s40096-020-00359-0 doi: 10.1007/s40096-020-00359-0
    [21] K. Deimling, Multivalued differential equations, Walter De Gruyter, Berlin, 1992.
    [22] K. Diethelm, A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoelasticity, Scientific Computing in Chemical Engineering II, Springer-Verlag, Heidelberg, 1999,217–224.
    [23] J. F. Gòmez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel, Physica A, 465 (2017), 562–572. https://doi.org/10.1016/j.physa.2016.08.072 doi: 10.1016/j.physa.2016.08.072
    [24] J. F. Gòmez-Aguilar, R. F. Escobar-Jimènez, M. G. Lòpez-Lòpez, V. M. Alvarado-Martìnez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, J. Electromagnet. Wave., 30 (2016), 1937–1952. https://doi.org/10.1080/09205071.2016.1225521 doi: 10.1080/09205071.2016.1225521
    [25] J. R. Graef, N. Guerraiche, S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. U. Babeş-Bol. Mat., 62 (2017), 427–438. https://doi.org/10.24193/subbmath.2017.4.02
    [26] B. Hazarika, R. Arab, M. Mursaleen, Applications of measure of moncompactness and operator type contraction for existence of solution of functional integral equations, Complex Anal. Oper. Th., 13 (2019), 3837–3851. https://doi.org/10.1007/s11785-019-00933-y doi: 10.1007/s11785-019-00933-y
    [27] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371. https://doi.org/10.1016/0362-546X(83)90006-8 doi: 10.1016/0362-546X(83)90006-8
    [28] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.
    [29] S. Hu, N. Papageorgiou, Handbook of multivalued analysis, Kluwer, Dordrecht, Boston, 1997.
    [30] M. I. Kamenskii, G. Petrosyan, On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 204 (2022), 74–84. https://doi.org/10.36535/0233-6723-2022-204-74-84 doi: 10.36535/0233-6723-2022-204-74-84
    [31] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B. V., Amsterdam, 2006.
    [32] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781–786.
    [33] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific Publishing Company, Singapore, 2010.
    [34] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, John-Wiley and Sons, New York, 1993.
    [35] N. Nyamoradi, D. Baleanu, R. Agarwal, On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval, Adv. Math. Phys., 2013 (2013). https://doi.org/10.1155/2013/823961
    [36] D. O'Regan, R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594–612. https://doi.org/10.1006/jmaa.2000.6789 doi: 10.1006/jmaa.2000.6789
    [37] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [38] A. Salem, H. M. Alshehri, L. Almaghamsi, Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space, Adv. Differ. Equ., 2021 (2021), 132. https://doi.org/10.1186/s13662-021-03302-2 doi: 10.1186/s13662-021-03302-2
    [39] S. Samko, A. Kilbas, O. Marichev, Fractional integrals and drivatives, Gordon and Breach Science Publishers, Longhorne, PA, 1993.
    [40] H. M. Srivastava, K. M. Saad, Some new models of the time-fractional gas dynamics equation, Adv. Math. Models Appl., 3 (2018), 5–17.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1315) PDF downloads(88) Cited by(23)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog