In this paper, we explore the approximative controllability of fractional stochastic differential inclusions (SDIs) of Sobolev-type with fractional derivatives in Atangana-Baleanu (AB) sense and Poisson jumps. Our findings are supported by the fixed point theorem, multi-valued map theory, compact semigroup theory and stochastic analysis principles. In the later part, an illustration is provided to clarify the established outcomes.
Citation: A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed. Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps[J]. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290
In this paper, we explore the approximative controllability of fractional stochastic differential inclusions (SDIs) of Sobolev-type with fractional derivatives in Atangana-Baleanu (AB) sense and Poisson jumps. Our findings are supported by the fixed point theorem, multi-valued map theory, compact semigroup theory and stochastic analysis principles. In the later part, an illustration is provided to clarify the established outcomes.
[1] | K. Li, R. Li, L. Cao, Y. Feng, B. Onasanya, Periodically intermittent control of Memristor-based hyper-chaotic bao-like system, Mathematics, 11 (2023), 1264. http://dx.doi.org/10.3390/math11051264 doi: 10.3390/math11051264 |
[2] | Y. Xue, J. Han, Z. Tu, X. Chen, Stability analysis and design of cooperative control for linear delta operator system, AIMS Mathematics, 8 (2023), 12671–12693. http://dx.doi.org/10.3934/math.2023637 doi: 10.3934/math.2023637 |
[3] | A. Sayed Ahmed, Existence and uniqueness of mild solutions to neutral impulsive fractional stochastic delay differential equations driven by both Brownian motion and fractional Brownian motion, Differ. Equat. Appl., 14 (2022), 433–446. http://dx.doi.org/10.7153/dea-2022-14-30 doi: 10.7153/dea-2022-14-30 |
[4] | H. Ahmed, Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theor. Probab., 28 (2015), 667–680. http://dx.doi.org/10.1007/s10959-013-0520-1 doi: 10.1007/s10959-013-0520-1 |
[5] | A. Sayed Ahmed, Stochastic delayed fractional-order differential equations driven by fractional Brownian motion, Malaya Journal of Matematik, 10 (2022), 187–197. http://dx.doi.org/10.26637/mjm1003/001 doi: 10.26637/mjm1003/001 |
[6] | A. Sayed Ahmed, H. Ahmed, Hilfer-Katugampola fractional stochastic differential equations with nonlocal conditions, Int. J. Nonlinear Anal. Appl., 3 (2022), 1–11. http://dx.doi.org/10.22075/ijnaa.2022.27337.3562 doi: 10.22075/ijnaa.2022.27337.3562 |
[7] | G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, London: Cambridge University Press, 2014. http://dx.doi.org/10.1017/CBO9780511666223 |
[8] | X. Mao, Stochastic differential equations and applications, Chichester: Elsevier, 1997. |
[9] | N. Durga, P. Muthukumar, Optimal control of Sobolev-type stochastic Hilfer fractional non-instantaneous impulsive differential inclusion involving Poisson jumps and Clarke subdifferential, IET Control Theory Appl., 14 (2020), 887–899. http://dx.doi.org/10.1049/iet-cta.2019.0167 doi: 10.1049/iet-cta.2019.0167 |
[10] | Y. Zhao, Q. Zhu, Stabilization of stochastic highly nonlinear delay systems with neutral term, IEEE T. Automat. Contr., 68 (2023), 2544–2551. http://dx.doi.org/10.1109/TAC.2022.3186827 doi: 10.1109/TAC.2022.3186827 |
[11] | Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2019), 3764–3771. http://dx.doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067 |
[12] | G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. http://dx.doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303 |
[13] | A. Sayed Ahmed, Implicit Hilfer-Katugampula-type fractional pantograph differential equations with nonlocal Katugampola fractional integral condition, Palestine Journal of Mathematics, 11 (2022), 74–85. |
[14] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. |
[15] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elsevier, 2006. |
[16] | H. Ahmed, M. El-Borai, H. El-Owaidy, A. Ghanem, Impulsive Hilfer fractional differential equations, Adv. Differ. Equ., 2018 (2018), 226. http://dx.doi.org/10.1186/s13662-018-1679-7 doi: 10.1186/s13662-018-1679-7 |
[17] | H. Ahmed, M. El-Borai, Hilfer fractional stochastic integro-differential equations, Appl. Math. Comput., 331 (2018), 182–189. http://dx.doi.org/10.1016/j.amc.2018.03.009 doi: 10.1016/j.amc.2018.03.009 |
[18] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, arXiv: 1602.03408. |
[19] | H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. http://dx.doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477 |
[20] | M. Mallika Arjunan, T. Abdeljawad, V. Kavitha, A. Yousef, On a new class of Atangana-Baleanu fractional Volterra-Fredholm integrodifferential inclusions with non-instantaneous impulses, Chaos Soliton. Fract., 148 (2021), 111075. http://dx.doi.org/10.1016/j.chaos.2021.111075 doi: 10.1016/j.chaos.2021.111075 |
[21] | M. Omaba, C. Enyi, Atangana-Baleanu time-fractional stochastic integrodifferential equation, Partial Differential Equations in Applied Mathematics, 4 (2021), 100100. http://dx.doi.org/10.1016/j.padiff.2021.100100 doi: 10.1016/j.padiff.2021.100100 |
[22] | S. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos Soliton. Fract., 142 (2021), 110390. http://dx.doi.org/10.1016/j.chaos.2020.110390 doi: 10.1016/j.chaos.2020.110390 |
[23] | J. Huang, D. Luo, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 33 (2023), 013120. http://dx.doi.org/10.1063/5.0125651 doi: 10.1063/5.0125651 |
[24] | K. Balachandran, J. Kim, Sample controllability of nonlinear stochastic integrodifferential systems, Nonlinear Anal.-Hybri., 4 (2010), 543–549. http://dx.doi.org/10.1016/j.nahs.2010.02.001 doi: 10.1016/j.nahs.2010.02.001 |
[25] | H. Ahmed, Controllability of fractional stochastic delay equations, Lobachevskii J. Math., 30 (2009), 195–202. http://dx.doi.org/10.1134/S1995080209030019 doi: 10.1134/S1995080209030019 |
[26] | J. Wang, M. F$\check{e}$ckan, Y. Zhou, Controllability of Sobolev type fractional evolution systems, Dynam. Part. Differ. Eq., 11 (2014), 71–87. http://dx.doi.org/10.4310/DPDE.2014.v11.n1.a4 doi: 10.4310/DPDE.2014.v11.n1.a4 |
[27] | J. Wang, H. Ahmed, Null controllability of nonlocal Hilfer fractional stochastic differential equations, Miskolc Math. Notes, 18 (2017), 1073–1083. http://dx.doi.org/10.18514/MMN.2017.2396 doi: 10.18514/MMN.2017.2396 |
[28] | H. Ahmed, J. Wang, Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 44 (2018), 673–690. http://dx.doi.org/10.1007/s41980-018-0043-8 doi: 10.1007/s41980-018-0043-8 |
[29] | Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 53 (2015), 1920–1933. http://dx.doi.org/10.1137/120903853 doi: 10.1137/120903853 |
[30] | N. Mahmudov, M. Mckibben, On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative, J. Funct. Space., 2015 (2015), 263823. http://dx.doi.org/10.1155/2015/263823 doi: 10.1155/2015/263823 |
[31] | H. Ahmed, Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Differ. Equ., 2014 (2014), 113. http://dx.doi.org/10.1186/1687-1847-2014-113 doi: 10.1186/1687-1847-2014-113 |
[32] | S. Subramaniam, Approximate controllability of Sobolev-type nonlocal Hilfer fractional stochastic differential system, Int. J. Dyn. Syst. Diffe., 12 (2022), 412–430. http://dx.doi.org/10.1504/IJDSDE.2022.127811 doi: 10.1504/IJDSDE.2022.127811 |
[33] | Y. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. Nisar, Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 14 (2023), 101882. http://dx.doi.org/10.1016/j.asej.2022.101882 doi: 10.1016/j.asej.2022.101882 |
[34] | T. Caraballo, M. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal.-Theor., 74 (2011), 3671–3684. http://dx.doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047 |
[35] | K. Deimling, Multivalued differential equations, Berlin: De Gruyter, 1992. http://dx.doi.org/10.1515/9783110874228 |
[36] | R. Sakthivel, R. Ganesh, S. Anthoni, Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comput., 225 (2013), 708–717. http://dx.doi.org/10.1016/j.amc.2013.09.068 doi: 10.1016/j.amc.2013.09.068 |
[37] | Y. Maa, V. Vijayakumar, A. Shukla, K. Nisar, K. Thilagavathi, H. Nashine, et al., Discussion on the existence of mild solution for fractional derivative by Mittag-Leffler kernel to fractional stochastic neutral differential inclusions, Alex. Eng. J., 63 (2023), 271–282. http://dx.doi.org/10.1016/j.aej.2022.08.006 doi: 10.1016/j.aej.2022.08.006 |