Research article

Triple correlation sums of coefficients of $ \theta $-series

  • Received: 20 June 2023 Revised: 28 July 2023 Accepted: 17 August 2023 Published: 30 August 2023
  • MSC : 11F03, 11F30

  • We investigate the triple correlation sums of coefficients of $ \theta $-series and prove an asymptotic formula with power-saving error term. As a result, we present that this type of sum is non-trivial in the regime $ H\ge X^{2/3+\varepsilon} $.

    Citation: Fei Hou, Bin Chen. Triple correlation sums of coefficients of $ \theta $-series[J]. AIMS Mathematics, 2023, 8(10): 25275-25287. doi: 10.3934/math.20231289

    Related Papers:

  • We investigate the triple correlation sums of coefficients of $ \theta $-series and prove an asymptotic formula with power-saving error term. As a result, we present that this type of sum is non-trivial in the regime $ H\ge X^{2/3+\varepsilon} $.



    加载中


    [1] K. Aggarwal, R. Holowinsky, Y. Lin, Z. Qi, A Bessel delta-method and exponential sums for $GL(2)$, Q. J. Math., 71 (2020), 1143–1168. http://dx.doi.org/10.1093/qmathj/haaa026 doi: 10.1093/qmathj/haaa026
    [2] V. Blomer, Shifted convolution sums and subconvexity bounds for automorphic $L$-functions, Int. Math. Res. Notices, 2004 (2004), 3905–3926. http://dx.doi.org/10.1155/S1073792804142505 doi: 10.1155/S1073792804142505
    [3] V. Blomer, On triple correlations of divisor functions, Bull. Lond. Math. Soc., 49 (2017), 10–22. http://dx.doi.org/10.1112/blms.12004 doi: 10.1112/blms.12004
    [4] T. Browning, The divisor problem for binary cubic form, J. Théor. Nombr. Bord., 23 (2011), 579–602.
    [5] J. Deshouillers, H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math., 70 (1982), 219–288. http://dx.doi.org/10.1007/BF01390728 doi: 10.1007/BF01390728
    [6] W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic $L$-functions, Invent. Math., 112 (1993), 1–8. http://dx.doi.org/10.1007/BF01232422 doi: 10.1007/BF01232422
    [7] W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic $L$-functions, II, Invent. Math., 115 (1994), 219–239. http://dx.doi.org/10.1007/BF01231759 doi: 10.1007/BF01231759
    [8] A. Good, Beitrage zur theorie der Dirichletreihen, die Spitzenformen zugeordnet sind, J. Number Theory, 13 (1981), 18–65. http://dx.doi.org/10.1016/0022-314X(81)90028-7 doi: 10.1016/0022-314X(81)90028-7
    [9] A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann., 255 (1984), 523–548. http://dx.doi.org/10.1007/BF01451932 doi: 10.1007/BF01451932
    [10] G. Harcos, P. Michel, The subconvexity problem for Rankin-Selberg $L$-functions and equidistribution of Heegner points, II, Invent. Math., 163 (2006), 581–655. http://dx.doi.org/10.1007/s00222-005-0468-6 doi: 10.1007/s00222-005-0468-6
    [11] D. Heath-Brown, The fourth power moment of the Riemann zeta function, Proc. Lond. Math. Soc., 38 (1979), 385–422. http://dx.doi.org/10.1112/plms/s3-38.3.385 doi: 10.1112/plms/s3-38.3.385
    [12] D. Heath-Brown, A new form of the circle method, and its application to quadratic forms, J. Reine Angew. Math. 1996 (1996), 149–206. http://dx.doi.org/10.1515/crll.1996.481.149
    [13] R. Holowinsky, K. Soundararajan, Mass equidistribution for Hecke eigenforms, Ann. Math., 172 (2010), 1517–1528.
    [14] T. Hulse, C. Kuan, D. Lowry-Duda, A. Walker, Second moments in the generalized Gauss circle problem, Forum Math. Sigma, 6 (2018), 24. http://dx.doi.org/10.1017/fms.2018.26 doi: 10.1017/fms.2018.26
    [15] A. Ivić, A note on the Laplace transform of the square in the circle problem, Stud. Sci. Math. Hung., 37 (2001), 391–399.
    [16] H. Iwaniec, E. Kowalski, Analytic number theory, Providence: American Mathematical Society, 2004.
    [17] M. Jutila, Transformations of exponential sums, Proceedings of the Amalfi Conference on Analytic Number Theory, 1992,263–270.
    [18] M. Jutila, A variant of the circle method, In: Sieve methods, exponential sums and their applications in number theory, Cambridge: Cambridge University Press, 1997,245–254. http://dx.doi.org/10.1017/CBO9780511526091.016
    [19] Y. Lau, J. Liu, Y. Ye, Shifted convolution sums of Fourier coefficients of cusp forms, In: Number theory: sailing on the sea of number theory, Hackensack: World Scientific Publishing, 2007,108–135. http://dx.doi.org/10.1142/9789812770134_0005
    [20] Y. Lin, Triple correlations of Fourier coefficients of cusp forms, Ramanujan J., 45 (2018), 841–858. http://dx.doi.org/10.1007/s11139-016-9874-1 doi: 10.1007/s11139-016-9874-1
    [21] G. Lü, P. Xi, On triple correlations of Fourier coefficients of cusp forms, J. Number Theory, 183 (2018), 485–492. http://dx.doi.org/10.1016/j.jnt.2017.08.028 doi: 10.1016/j.jnt.2017.08.028
    [22] G. Lü, P. Xi, On triple correlations of Fourier coefficients of cusp forms, II, Int. J. Number Theory, 15 (2019), 713–722. http://dx.doi.org/10.1142/S1793042119500374 doi: 10.1142/S1793042119500374
    [23] W. Luo, Shifted convolution of cusp-forms with $\theta$-series, Abh. Math. Semin. Univ. Hambg., 81 (2011), 45–53. http://dx.doi.org/10.1007/s12188-010-0046-8 doi: 10.1007/s12188-010-0046-8
    [24] R. Munshi, The circle method and bounds for $L$-functions-IV: subconvexity for twists of $GL(3)\;L$-functions, Ann. Math., 182 (2015), 617–672. http://dx.doi.org/10.4007/annals.2015.182.2.6 doi: 10.4007/annals.2015.182.2.6
    [25] S. Singh, On double shifted convolution sum of $SL(2, {\mathbb{Z}})$ Hecke eigenforms, J. Number Theory, 191 (2018), 258–272. http://dx.doi.org/10.1016/j.jnt.2018.03.008 doi: 10.1016/j.jnt.2018.03.008
    [26] G. Watson, A treatise on the theory of Bessel functions, 2Eds., Cambridge: Cambridge University Press, 1944.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(549) PDF downloads(18) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog