We explore the dynamics of a three-species Lotka-Volterra model incorporating intraguild (IG) predation. The model encompasses interactions between a basal prey, intraguild prey and omnivorous top/intraguild predator. These interactions are characterized by linear functional responses, while considering intraspecific competition and cooperative hunting dynamics. The study involves a comprehensive stability of different steady states and bifurcation analysis. Bifurcation structures unveil shifts in equilibrium stability and the emergence of new equilibrium states. Investigation into dynamics around the coexistence equilibrium highlights diverse behaviors, including stable coexistence, oscillations and chaos. Furthermore, exploration of species' densities under parameter variations uncovers distinct patterns, ranging from stability to chaos. Incorporating the concept of hunting cooperation among IG predators and IG prey can lead to the emergence or suppression of chaotic oscillations, respectively. Additionally, we observe that lower consumption rate of IG predator and cooperation of IG predator helps the system to keep in a stable state position.
Citation: Nazmul Sk, Bapin Mondal, Abhijit Sarkar, Shyam Sundar Santra, Dumitru Baleanu, Mohamed Altanji. Chaos emergence and dissipation in a three-species food web model with intraguild predation and cooperative hunting[J]. AIMS Mathematics, 2024, 9(1): 1023-1045. doi: 10.3934/math.2024051
We explore the dynamics of a three-species Lotka-Volterra model incorporating intraguild (IG) predation. The model encompasses interactions between a basal prey, intraguild prey and omnivorous top/intraguild predator. These interactions are characterized by linear functional responses, while considering intraspecific competition and cooperative hunting dynamics. The study involves a comprehensive stability of different steady states and bifurcation analysis. Bifurcation structures unveil shifts in equilibrium stability and the emergence of new equilibrium states. Investigation into dynamics around the coexistence equilibrium highlights diverse behaviors, including stable coexistence, oscillations and chaos. Furthermore, exploration of species' densities under parameter variations uncovers distinct patterns, ranging from stability to chaos. Incorporating the concept of hunting cooperation among IG predators and IG prey can lead to the emergence or suppression of chaotic oscillations, respectively. Additionally, we observe that lower consumption rate of IG predator and cooperation of IG predator helps the system to keep in a stable state position.
[1] | M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13–22. https://doi.org/10.1016/j.jtbi.2017.02.002 doi: 10.1016/j.jtbi.2017.02.002 |
[2] | M. Arim, P. A. Marquet, Intraguild predation: a widespread interaction related to species biology, Ecol. Lett., 7 (2004), 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x doi: 10.1111/j.1461-0248.2004.00613.x |
[3] | L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72 (2010), 94–121. https://doi.org/10.1007/s11538-009-9439-1 doi: 10.1007/s11538-009-9439-1 |
[4] | M. Chen, R. Wu, Dynamics of a harvested predator-prey model with predator-taxis, Bull. Malays. Math. Sci. Soc., 46 (2023), 76. https://doi.org/10.1007/s40840-023-01470-w doi: 10.1007/s40840-023-01470-w |
[5] | M. Chen, H. M. Srivastava, Stability of bifurcating solution of a predator-prey model, Chaos Solitons Fract., 168 (2023), 113153. https://doi.org/10.1016/j.chaos.2023.113153 doi: 10.1016/j.chaos.2023.113153 |
[6] | C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65–75. |
[7] | S. Creel, N. M. Creel, Communal hunting and pack size in African wild dogs, Lycaon pictus, Anim. Behav., 50 (1995), 1325–1339. https://doi.org/10.1016/0003-3472(95)80048-4 doi: 10.1016/0003-3472(95)80048-4 |
[8] | J. N. Eisenberg, D. R. Maszle, The structural stability of a three-species food chain model, J. Theor. Biol., 176 (1995), 501–510. https://doi.org/10.1006/jtbi.1995.0216 doi: 10.1006/jtbi.1995.0216 |
[9] | H. I. Freedman, P. Waltman, Mathematical analysis of some three-species food-chain models, Math. Biosci., 33 (1977), 257–276. https://doi.org/10.1016/0025-5564(77)90142-0 doi: 10.1016/0025-5564(77)90142-0 |
[10] | M. Freeze, Y. Chang, W. Feng, Analysis of dynamics in a complex food chain with ratio-dependent functional response, J. Appl. Anal. Comput., 4 (2014), 69–87. https://doi.org/10.11948/2014002 doi: 10.11948/2014002 |
[11] | U. Ghosh, A. A. Thirthar, B. Mondal, P. Majumdar, Effect of fear, treatment, and hunting cooperation on an eco-epidemiological model: memory effect in terms of fractional derivative, Iran. J. Sci. Technol. Trans. Sci., 46 (2022), 1541–1554. https://doi.org/10.1007/s40995-022-01371-w doi: 10.1007/s40995-022-01371-w |
[12] | M. E. Gilpin, Spiral chaos in a predator-prey model, Am. Nat., 113 (1979), 306–308. https://doi.org/10.1086/283389 doi: 10.1086/283389 |
[13] | E. A. Gómez-Hernández, F. N. Moreno-Gómez, M. Bravo-Gaete, F. Córdova-Lepe, Concurrent dilution and amplification effects in an intraguild predation eco-epidemiological model, Sci. Rep., 13 (2023), 6425. https://doi.org/10.1038/s41598-023-33345-2 doi: 10.1038/s41598-023-33345-2 |
[14] | R. J. Hall, Intraguild predation in the presence of a shared natural enemy, Ecology, 92 (2011), 352–361. https://doi.org/10.1890/09-2314.1 doi: 10.1890/09-2314.1 |
[15] | A. Hastings, T. Powell, Chaos in a three-species food chain, Ecology, 72 (1991), 896–903. https://doi.org/10.2307/1940591 doi: 10.2307/1940591 |
[16] | C. A. M. Hickerson, C. D. Anthony, M. Walton, Edge effects and intraguild predation in native and introduced centipedes: evidence from the field and from laboratory microcosms, Oecologia, 146 (2002), 110–119. https://doi.org/10.1007/s00442-005-0197-y doi: 10.1007/s00442-005-0197-y |
[17] | R. D. Holt, G. A. Polis, A theoretical framework for intraguild predation, Am. Nat., 149 (1997), 745–764. https://doi.org/10.1086/286018 doi: 10.1086/286018 |
[18] | S. B. Hsu, S. Ruan, T. H. Yang, On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response, Discrete Contin. Dyn. Syst., 18 (2013), 2331–2353. https://doi.org/10.3934/dcdsb.2013.18.2331 doi: 10.3934/dcdsb.2013.18.2331 |
[19] | S. B. Hsu, S. Ruan, T. H. Yang, Analysis of three species Lotka-Volterra food web models with omnivory, J. Math. Anal. Appl., 426 (2015), 659–687. https://doi.org/10.1016/j.jmaa.2015.01.035 doi: 10.1016/j.jmaa.2015.01.035 |
[20] | J. Ji, L. Wang, Competitive exclusion and coexistence in an intraguild predation model with Beddington-DeAngelis functional response, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), 106192. https://doi.org/10.1016/j.cnsns.2021.106192 doi: 10.1016/j.cnsns.2021.106192 |
[21] | Y. Kang, L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013), 1227–1259. https://doi.org/10.1007/s00285-012-0584-z doi: 10.1007/s00285-012-0584-z |
[22] | P. Liu, J. Shi, Y. Wang, Bifurcation from a degenerate simple eigenvalue, J. Funct. Anal., 264 (2013), 2269–2299. https://doi.org/10.1016/j.jfa.2013.02.010 doi: 10.1016/j.jfa.2013.02.010 |
[23] | S. Lv, M. Zhao, The dynamic complexity of a three species food chain model, Chaos Solitons Fract., 37 (2008), 1469–1480. https://doi.org/10.1016/j.chaos.2006.10.057 doi: 10.1016/j.chaos.2006.10.057 |
[24] | D. W. Macdonald, The ecology of carnivore social behaviour, Nature, 301 (1983), 379–384. |
[25] | P. Majumdar, B. Mondal, S. Debnath, U. Ghosh, Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect, Chaos Solitons Fract., 164 (2022), 112585. https://doi.org/10.1016/j.chaos.2022.112585 doi: 10.1016/j.chaos.2022.112585 |
[26] | K. McCann, A. Hastings, Re-evaluating the omnivory-stability relationship in food webs, Proc. R. Soc. Lond. B, 264 (1997), 1249–1254. https://doi.org/10.1098/rspb.1997.0172 doi: 10.1098/rspb.1997.0172 |
[27] | M. W. Moffett, Foraging dynamics in the group-hunting myrmicine ant, Pheidologeton diversus, J. Insect Behav., 1 (1988), 309–331. https://doi.org/10.1007/BF01054528 doi: 10.1007/BF01054528 |
[28] | B. Mondal, U. Ghosh, M. S. Rahman, P. Saha, S. Sarkar, Studies of different types of bifurcations analyses of an imprecise two species food chain model with fear effect and non-linear harvesting, Math. Comput. Simul., 192 (2022), 111–135. https://doi.org/10.1016/j.matcom.2021.08.019 doi: 10.1016/j.matcom.2021.08.019 |
[29] | B. Mondal, S. Sarkar, U. Ghosh, An autonomous and nonautonomous predator-prey model with fear, refuge, and nonlinear harvesting: Backward, Bogdanov-Takens, transcritical bifurcations, and optimal control, Math. Methods Appl. Sci., 46 (2023), 17260–17287. https://doi.org/10.1002/mma.9499 doi: 10.1002/mma.9499 |
[30] | B. Mondal, S. Sarkar, U. Ghosh, A study of a prey-generalist predator system considering hunting cooperation and fear effects under interval uncertainty, J. Uncertain Syst., 16 (2023), 2350001. https://doi.org/10.1142/S1752890923500010 doi: 10.1142/S1752890923500010 |
[31] | B. Mondal, S. Sarkar, U. Ghosh, Complex dynamics of a generalist predator-prey model with hunting cooperation in predator, Eur. Phys. J. Plus, 137 (2022), 43. https://doi.org/10.1140/epjp/s13360-021-02272-4 doi: 10.1140/epjp/s13360-021-02272-4 |
[32] | B. Mondal, A. Sarkar, S. S. Santra, D. Majumder, T. Muhammad, Sensitivity of parameters and the impact of white noise on a generalist predator-prey model with hunting cooperation, Eur. Phys. J. Plus, 138 (2023), 1070. https://doi.org/10.1140/epjp/s13360-023-04710-x doi: 10.1140/epjp/s13360-023-04710-x |
[33] | B. Mondal, A. Sarkar, N. Sk, S. S. Santra, T. Muhammad, Exploring resilience, chaos, and bifurcations in a discrete food web model incorporating the mate finding Allee effect, Eur. Phys. J. Plus, 138 (2023), 1018. https://doi.org/10.1140/epjp/s13360-023-04651-5 doi: 10.1140/epjp/s13360-023-04651-5 |
[34] | N. Mukherjee, M. Banerjee, Hunting cooperation among slowly diffusing specialist predators can induce stationary turing patterns, Phys. A, 599 (2022), 127417. https://doi.org/10.1016/j.physa.2022.127417 doi: 10.1016/j.physa.2022.127417 |
[35] | T. Namba, Y. Takeuchi, M. Banerjee, Stabilizing effect of intra-specific competition on prey-predator dynamics with intraguild predation, Math. Modell. Nat. Phenom., 13 (2018), 29. https://doi.org/10.1051/mmnp/2018033 doi: 10.1051/mmnp/2018033 |
[36] | C. Packer, D. Scheel, A. E. Pusey, Why lions form groups: food is not enough, Am. Nat., 136 (1990), 1–19. https://doi.org/10.1086/285079 doi: 10.1086/285079 |
[37] | S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex., 39 (2019), 100770. https://doi.org/10.1016/j.ecocom.2019.100770 doi: 10.1016/j.ecocom.2019.100770 |
[38] | P. Panja, Dynamics of a fractional order predator-prey model with intraguild predation, Int. J. Modell. Simul., 39 (2019), 256–268. https://doi.org/10.1080/02286203.2019.1611311 doi: 10.1080/02286203.2019.1611311 |
[39] | B. Paul, B. Mondal, J. K. Ghosh, U. Ghosh, Dynamic interactions between prey and predator with cooperation and Allee effect: deterministic and stochastic approach, J. Biol. Syst., 30 (2022), 799–836. https://doi.org/10.1142/S0218339022500292 doi: 10.1142/S0218339022500292 |
[40] | L. Perko, Differential equations and dynamical systems, Springer Science & Business Media, 1996. |
[41] | G. A. Polis, C. A. Myers, R. D. Holt, The ecology and evolution of intraguild predation: potential competitors that eat each other, Ann. Rev. Ecol. Syst., 20 (1989), 297–330. https://doi.org/10.1146/annurev.es.20.110189.001501 doi: 10.1146/annurev.es.20.110189.001501 |
[42] | P. A. Schmidt, L. D. Mech, Wolf pack size and food acquisition, Am. Nat., 150 (1997), 513–517. https://doi.org/10.1086/286079 doi: 10.1086/286079 |
[43] | C. Sun, M. Loreau, Dynamics of a three-species food chain model with adaptive traits, Chaos Solitons Fract., 41 (2009), 2812–2819. https://doi.org/10.1016/j.chaos.2008.10.015 doi: 10.1016/j.chaos.2008.10.015 |
[44] | D. Sen, S. Ghorai, M. Banerjee, Complex dynamics of a three species prey-predator model with intraguild predation, Ecol. Complex., 34 (2018), 9–22. https://doi.org/10.1016/j.ecocom.2018.02.002 doi: 10.1016/j.ecocom.2018.02.002 |
[45] | N. Sk, P. K. Tiwari, S. Pal, A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation, Math. Comput. Simul., 192 (2022), 136–166. https://doi.org/10.1016/j.matcom.2021.08.018 doi: 10.1016/j.matcom.2021.08.018 |
[46] | N. Sk, B. Mondal, A. A. Thirthar, M. A. Alqudah, T. Abdeljawad, Bistability and tristability in a deterministic prey-predator model: transitions and emergent patterns in its stochastic counterpart, Chaos Solitons Fract., 176 (2023), 114073. https://doi.org/10.1016/j.chaos.2023.114073 doi: 10.1016/j.chaos.2023.114073 |
[47] | K. Tanabe, T. Namba, Omnivory creates chaos in simple food web models, Ecology, 86 (2005), 3411–3414. https://doi.org/10.1890/05-0720 doi: 10.1890/05-0720 |
[48] | Y. Takeuchi, N. Adachi, Existence and bifurcation of stable equilibrium in two-prey, one-predator communities, Bull. Math. Biol., 45 (1983), 877–900. https://doi.org/10.1016/S0092-8240(83)80067-6 doi: 10.1016/S0092-8240(83)80067-6 |
[49] | G. W. Uetz, Foraging strategies of spiders, Trends Ecol. Evolut., 7 (1992), 155–159. https://doi.org/10.1016/0169-5347(92)90209-T doi: 10.1016/0169-5347(92)90209-T |
[50] | J. Vandermeer, Omnivory and stability of food webs, J. Theor. Biol., 238 (2006), 497–504. https://doi.org/10.1016/j.jtbi.2005.06.006 doi: 10.1016/j.jtbi.2005.06.006 |
[51] | M. Yamaguchi, Y. Takeuchi, W. Ma, Dynamical properties of a stage structured three-species model with intra–guild predation, J. Comput. Appl. Math., 201 (2007), 327–338. https://doi.org/10.1016/j.cam.2005.12.033 doi: 10.1016/j.cam.2005.12.033 |