This paper investigates the global asymptotic stability problem for a class of Takagi-Sugeno fuzzy Clifford-valued delayed neural networks with impulsive effects and leakage delays using the system decomposition method. By applying Takagi-Sugeno fuzzy theory, we first consider a general form of Takagi-Sugeno fuzzy Clifford-valued delayed neural networks. Then, we decompose the considered $ n $-dimensional Clifford-valued systems into $ 2^mn $-dimensional real-valued systems in order to avoid the inconvenience caused by the non-commutativity of the multiplication of Clifford numbers. By using Lyapunov-Krasovskii functionals and integral inequalities, we derive new sufficient criteria to guarantee the global asymptotic stability for the considered neural networks. Further, the results of this paper are presented in terms of real-valued linear matrix inequalities, which can be directly solved using the MATLAB LMI toolbox. Finally, a numerical example is provided with their simulations to demonstrate the validity of the theoretical analysis.
Citation: Abdulaziz M. Alanazi, R. Sriraman, R. Gurusamy, S. Athithan, P. Vignesh, Zaid Bassfar, Adel R. Alharbi, Amer Aljaedi. System decomposition method-based global stability criteria for T-S fuzzy Clifford-valued delayed neural networks with impulses and leakage term[J]. AIMS Mathematics, 2023, 8(7): 15166-15188. doi: 10.3934/math.2023774
This paper investigates the global asymptotic stability problem for a class of Takagi-Sugeno fuzzy Clifford-valued delayed neural networks with impulsive effects and leakage delays using the system decomposition method. By applying Takagi-Sugeno fuzzy theory, we first consider a general form of Takagi-Sugeno fuzzy Clifford-valued delayed neural networks. Then, we decompose the considered $ n $-dimensional Clifford-valued systems into $ 2^mn $-dimensional real-valued systems in order to avoid the inconvenience caused by the non-commutativity of the multiplication of Clifford numbers. By using Lyapunov-Krasovskii functionals and integral inequalities, we derive new sufficient criteria to guarantee the global asymptotic stability for the considered neural networks. Further, the results of this paper are presented in terms of real-valued linear matrix inequalities, which can be directly solved using the MATLAB LMI toolbox. Finally, a numerical example is provided with their simulations to demonstrate the validity of the theoretical analysis.
[1] | J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. U.S.A, 79 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554 |
[2] | C. M. Marcus, R. M. Westervelt, Stability of analog neural networks with delay, Phys. Rev. A, 39 (1989), 347–359. https://doi.org/10.1103/PhysRevA.39.347 doi: 10.1103/PhysRevA.39.347 |
[3] | J. Cao, Global exponential stability of Hopfield neural networks, Int. J. Syst. Sci., 32 (2001), 233–236. https://doi.org/10.1080/002077201750053119 doi: 10.1080/002077201750053119 |
[4] | J. Cao, D. W. C. Ho, A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach, Chaos Soliton. Fract., 24 (2005), 1317–1329. https://doi.org/10.1016/j.chaos.2004.09.063 doi: 10.1016/j.chaos.2004.09.063 |
[5] | Z. Zhang, J. Cao, D. Zhou, Novel LMI-based condition on global asymptotic stability for a class of Cohen-Grossberg BAM networks with extended activation functions, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 1161–1172. https://doi.org/10.1109/TNNLS.2013.2289855 doi: 10.1109/TNNLS.2013.2289855 |
[6] | Q. Song, Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach, Neurocomputing, 71 (2008), 2823–2830. https://doi.org/10.1016/j.neucom.2007.08.024 doi: 10.1016/j.neucom.2007.08.024 |
[7] | S. Arik, Stability analysis of delayed neural networks, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 47 (2000), 1089–1092. https://doi.org/10.1109/81.855465 doi: 10.1109/81.855465 |
[8] | A. Hirose, Nature of complex number and complex-valued neural networks, Front. Electr. Electron. Eng. China, 6 (2011), 171–180. https://doi.org/10.1007/s11460-011-0125-3 doi: 10.1007/s11460-011-0125-3 |
[9] | C. Aouiti, M. Bessifi, X. Li, Finite-time and fixed-time synchronization of complex-valued recurrent neural networks with discontinuous activations and time-varying delays, Circuits Syst. Signal Process, 39 (2020), 5406–5428. https://doi.org/10.1007/s00034-020-01428-4 doi: 10.1007/s00034-020-01428-4 |
[10] | Z. Zhang, X. Liu, D. Zhou, C. Lin, J. Chen, H. Wang, Finite-time stabilizability and instabilizability for complex-valued memristive neural networks with time delays, IEEE Trans. Syst. Man. Cybern. Syst., 48 (2018), 2371–2382. https://doi.org/10.1109/TSMC.2017.2754508 doi: 10.1109/TSMC.2017.2754508 |
[11] | R. Samidurai, R. Sriraman, S. Zhu, Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays, Neurocomputing, 338 (2019), 262–273. https://doi.org/10.1016/j.neucom.2019.02.027 doi: 10.1016/j.neucom.2019.02.027 |
[12] | K. Subramanian, P. Muthukumar, Global asymptotic stability of complex-valued neural networks with additive time-varying delays, Cogn. Neurodyn., 11 (2017), 293–306. https://doi.org/10.1007/s11571-017-9429-1 doi: 10.1007/s11571-017-9429-1 |
[13] | Q. Song, Z. Zhao, Y. Liu, Stability analysis of complex-valued neural networks with probabilistic time-varying delays, Neurocomputing, 159 (2015), 96–104. https://doi.org/10.1016/j.neucom.2015.02.015 |
[14] | X. Liu, J. Zheng. Convergence rates of solutions in a predator-prey system withindirect pursuit-evasion interaction in domains of arbitrary dimension, Discrete Contin. Dyn. Syst. B, 28 (2023), 2269–2293. https://doi.org/10.3934/dcdsb.2022168 doi: 10.3934/dcdsb.2022168 |
[15] | M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Amer. Math. Soc., 369 (2017), 3067–3125. https://doi.org/10.1090/tran/6733 |
[16] | M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis Stokes system with rotation flux components, J. Evol. Eqns., 18 (2018), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8 doi: 10.1007/s00028-018-0440-8 |
[17] | J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equ., 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013 |
[18] | J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differ. Equ., 272 (2021), 164–202. https://doi.org/10.1016/j.jde.2020.09.029 doi: 10.1016/j.jde.2020.09.029 |
[19] | J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller-Segel system with logistic source, J. Differ. Equ., 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003 |
[20] | J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux, Calc. Var. Partial Differ. Equ., 61 (2022), 52. https://doi.org/10.1007/s00526-021-02164-6 doi: 10.1007/s00526-021-02164-6 |
[21] | Y. Ke, J. Zheng, An optimal result for global existence in a three-dimensional Keller-Segel Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Differ. Equ., 58 (2019), 109. https://doi.org/10.1007/s00526-019-1568-2 doi: 10.1007/s00526-019-1568-2 |
[22] | T. Isokawa, H. Nishimura, N. Kamiura, N. Matsui, Associative memory in quaternionic Hopfield neural network, Int. J. Neural Syst., 18 (2008), 135–145. https://doi.org/10.1142/S0129065708001440 doi: 10.1142/S0129065708001440 |
[23] | T. Parcollet, M. Morchid, G. Linares, A survey of quaternion neural networks, Artif. Intell. Rev., 53 (2020), 2957–2982. https://doi.org/10.1007/s10462-019-09752-1 doi: 10.1007/s10462-019-09752-1 |
[24] | Y. Li, X. Meng, Almost automorphic solutions for quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays, J. Syst. Sci. Complex., 33 (2020), 100–121. https://doi.org/10.1007/s11424-019-8051-1 doi: 10.1007/s11424-019-8051-1 |
[25] | Z. Tu, Y. Zhao, N. Ding, Y. Feng, W. Zhang, Stability analysis of quaternion-valued neural networks with both discrete and distributed delays, Appl. Math. Comput., 343 (2019), 342–353. https://doi.org/10.1016/j.amc.2018.09.049 doi: 10.1016/j.amc.2018.09.049 |
[26] | H. Shu, Q. Song, Y. Liu, Z. Zhao, F. E. Alsaadi, Global stability of quaternion-valued neural networks with non-differentiable time-varying delays, Neurocomputing, 247 (2017), 202–212. https://doi.org/10.1016/j.neucom.2017.03.052 doi: 10.1016/j.neucom.2017.03.052 |
[27] | M. Tan, Y. Liu, D. Xu, Multistability analysis of delayed quaternion-valued neural networks with nonmonotonic piecewise nonlinear activation functions, Appl. Math. Comput., 341 (2019), 229–255. https://doi.org/10.1016/j.amc.2018.08.033 doi: 10.1016/j.amc.2018.08.033 |
[28] | Y. Kuroe, Models of Clifford recurrent neural networks and their dynamics, Proc. 2011 Int. Joint Conf. Neural Netw., San Jose, CA, USA, (2011), 1035–1041. https://doi.org/10.1109/IJCNN.2011.6033336 |
[29] | S. Buchholz, G. Sommer, On Clifford neurons and Clifford multi-layer perceptrons, Neural Netw., 21 (2008), 925–935. https://doi.org/10.1016/j.neunet.2008.03.004 doi: 10.1016/j.neunet.2008.03.004 |
[30] | J. Zhu, J. Sun, Global exponential stability of Clifford-valued recurrent neural networks, Neurocomputing, 173 (2016), 685–689. https://doi.org/10.1016/j.neucom.2015.08.016 |
[31] | Y. Liu, P. Xu, J. Lu, J. Liang, Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dyn., 84 (2016), 767–777. https://doi.org/10.1007/s11071-015-2526-y doi: 10.1007/s11071-015-2526-y |
[32] | S. Shen, Y. Li, $S^p$-Almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays, Neural Process. Lett., 51 (2020), 1749–1769. https://doi.org/10.1007/s11063-019-10176-9 doi: 10.1007/s11063-019-10176-9 |
[33] | Y. Li, J. Xiang, B. Li, Globally asymptotic almost automorphic synchronization of Clifford-valued recurrent neural netwirks with delays, IEEE Access, 7 (2019), 54946–54957. https://doi.org/10.1109/ACCESS.2019.2912838 doi: 10.1109/ACCESS.2019.2912838 |
[34] | B. Li, Y. Li, Existence and global exponential stability of pseudo almost periodic solution for Clifford-valued neutral high-order Hopfield neural networks with leakage delays, IEEE Access, 7 (2019), 150213–150225. https://doi.org/10.1109/ACCESS.2019.2947647 doi: 10.1109/ACCESS.2019.2947647 |
[35] | G. Rajchakit, R. Sriraman, C. P. Lim, B. Unyong, Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays, Math. Comput. Simulat., 201 (2021), 508–527. https://doi.org/10.1016/j.matcom.2021.02.023 doi: 10.1016/j.matcom.2021.02.023 |
[36] | C. Aouiti, F. Dridi, Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and $D$ operator in Clifford algebra, Int. J. Syst. Sci., 51 (2020), 1759–1781. https://doi.org/10.1080/00207721.2020.1777345 doi: 10.1080/00207721.2020.1777345 |
[37] | G. Rajchakit, R. Sriraman, P. Vignesh, C. P. Lim, Impulsive effects on Cliffordvalued neural networks with time-varying delays: An asymptotic stability analysis, Appl. Math. Comput., 407 (2021), 126309. https://doi.org/10.1016/j.amc.2021.126309 doi: 10.1016/j.amc.2021.126309 |
[38] | Y. Li, J. Xiang, Existence and global exponential stability of anti-periodic solution for Clifford-valued inertial Cohen-Grossberg neural networks with delays, Neurocomputing, 332 (2019), 259–269. https://doi.org/10.1016/j.neucom.2018.12.064 doi: 10.1016/j.neucom.2018.12.064 |
[39] | T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15 (1985), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399 |
[40] | L. Wang, H. K. Lam, New stability criterion for continuous-time Takagi-Sugeno fuzzy systems with time-varying delay, IEEE Trans. Cybern., 49 (2019), 1551–1556. https://doi.org/10.1109/TCYB.2018.2801795 doi: 10.1109/TCYB.2018.2801795 |
[41] | Y. Y. Hou, T. L. Liao, J. J. Yan, Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays, 37 (2007), 720–726. https://doi.org/10.1109/TSMCB.2006.889628 |
[42] | C. K. Ahn, Delay-dependent state estimation for T-S fuzzy delayed Hopfield neural networks, Nonlinear Dyn., 61 (2010), 483–489. https://doi.org/10.1007/s11071-010-9664-z doi: 10.1007/s11071-010-9664-z |
[43] | J. Jian, P. Wan, Global exponential convergence of fuzzy complex-valued neural networks with time-varying delays and impulsive effects, Fuzzy Sets Syst., 338 (2018), 23–39. https://doi.org/10.1016/j.fss.2017.12.001 doi: 10.1016/j.fss.2017.12.001 |
[44] | R. Sriraman, N. Asha, Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses, Kybernetika, 58 (2022), 498–521. https://doi.org/10.14736/kyb-2022-4-0498 doi: 10.14736/kyb-2022-4-0498 |
[45] | Z. Zhang, Z. Quan, Global exponential stability via inequality technique for inertial BAM neural networks with time delays, Neurocomputing, 151 (2015), 1316–1326. https://doi.org/10.1016/j.neucom.2014.10.072 doi: 10.1016/j.neucom.2014.10.072 |
[46] | Z. Zhang, J. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum value approach, IEEE Trans. Fuzzy Syst., 30 (2022), 1436–1446. https://doi.org/10.1109/TFUZZ.2021.3059953 doi: 10.1109/TFUZZ.2021.3059953 |
[47] | Z. Zhang, J. Cao, Novel Finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800 |
[48] | K. Gopalsamy, Stability of artificial neural networks with impulses, Appl. Math. Comput., 154 (2004), 783–813. https://doi.org/10.1016/S0096-3003(03)00750-1 doi: 10.1016/S0096-3003(03)00750-1 |
[49] | R. Raja, Q. Zhu, S. Senthilraj, R. Samidurai, Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects, Appl. Math. Comput., 266 (2015), 1050–1069. https://doi.org/10.1016/j.amc.2015.06.030 doi: 10.1016/j.amc.2015.06.030 |
[50] | R. Samidurai, R. Manivannan, Robust passivity analysis for stochastic impulsive neural networks with leakage and additive time-varying delay components, Appl. Math. Comput., 268 (2015), 743–762. https://doi.org/10.1016/j.amc.2015.06.116 doi: 10.1016/j.amc.2015.06.116 |
[51] | J. Chen, C. Li, X. Yang, Asymptotic stability of delayed fractional-order fuzzy neural networks with impulse effects, J. Franklin Inst., 355 (2018), 7595–7608. https://doi.org/10.1016/j.jfranklin.2018.07.039 doi: 10.1016/j.jfranklin.2018.07.039 |
[52] | Y. Tan, S. Tang, J. Yang. Z. Liu, Robust stability analysis of impulsive complex-valued neural networks with time delays and parameter uncertainties, J. Inequal. Appl., 2017 (2017), 215. https://doi.org/10.1186/s13660-017-1490-0 doi: 10.1186/s13660-017-1490-0 |
[53] | H. Xu, C. Zhang, L. Jiang, J. Smith, Stability analysis of linear systems with two additive timevarying delays via delay-product-type Lyapunov functional, Appl. Math. Model., 45 (2017), 955–964. https://doi.org/10.1016/j.apm.2017.01.032 doi: 10.1016/j.apm.2017.01.032 |
[54] | P. G. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014 |