We give detailed theoretical explanations for getting the closed-form formulas and representations for the general solutions to four special cases of a class of nonlinear difference equations of second order considered in the literature, present an extension of the class of difference equations which is solvable in closed form, analyze some results on the long-term behavior of the solutions to the class of equations, and give some results on convergence.
Citation: Stevo Stević. Solvability and representations of the general solutions to some nonlinear difference equations of second order[J]. AIMS Mathematics, 2023, 8(7): 15148-15165. doi: 10.3934/math.2023773
We give detailed theoretical explanations for getting the closed-form formulas and representations for the general solutions to four special cases of a class of nonlinear difference equations of second order considered in the literature, present an extension of the class of difference equations which is solvable in closed form, analyze some results on the long-term behavior of the solutions to the class of equations, and give some results on convergence.
[1] | D. Adamović, Solution to problem 194, Mat. Vesnik, 23 (1971), 236–242. |
[2] | M. I. Bashmakov, B. M. Bekker, V. M. Gol'hovoi, Zadachi po matematike. Algebra and analiz (in Russian), Nauka, Moskva, 1982. |
[3] | K. S. Berenhaut, J. D. Foley, S. Stević, Boundedness character of positive solutions of a max difference equation, J. Differ. Equ. Appl., 12 (2006), 1193–1199. https://doi.org/10.1080/10236190600949766 doi: 10.1080/10236190600949766 |
[4] | K. S. Berenhaut, S. Stević, The behaviour of the positive solutions of the difference equation $x_n = A+(x_{n-2}/x_{n-1})^p$, J. Differ. Equ. Appl., 12 (2006), 909–918. https://doi.org/10.1080/10236190600836377 doi: 10.1080/10236190600836377 |
[5] | L. Berg, On the asymptotics of nonlinear difference equations, Z. Anal. Anwend., 21 (2002), 1061–1074. https://doi.org/10.4171/ZAA/1127 doi: 10.4171/ZAA/1127 |
[6] | L. Berg, S. Stević, On the asymptotics of the difference equation $y_n(1+y_{n-1}\cdots y_{n-k+1}) = y_{n-k}$, J. Differ. Equ. Appl., 17 (2011), 577–586. https://doi.org/10.1080/10236190903203820 doi: 10.1080/10236190903203820 |
[7] | D. Bernoulli, Observationes de seriebus quae formantur ex additione vel substractione quacunque terminorum se mutuo consequentium, ubi praesertim earundem insignis usus pro inveniendis radicum omnium aequationum algebraicarum ostenditur (in Latin), Commentarii Acad. Petropol. III, 1728 (1732), 85–100. |
[8] | G. Boole, A treatsie on the calculus of finite differences, 3 Eds., Macmillan and Co., London, 1880. |
[9] | L. Brand, A sequence defined by a difference equation, Am. Math. Mon., 62 (1955), 489–492. https://doi.org/10.2307/2307362 doi: 10.2307/2307362 |
[10] | A. de Moivre, Miscellanea analytica de seriebus et quadraturis (in Latin), Londini, 1730. |
[11] | E. M. Elsayed, Qualitative behavior of a rational recursive sequence, Indagat. Math., 19 (2008), 189–201. https://doi.org/10.1016/S0019-3577(09)00004-4 doi: 10.1016/S0019-3577(09)00004-4 |
[12] | L. Euler, Introductio in analysin infinitorum, tomus primus (in Latin), Lausannae, 1748. |
[13] | B. Iričanin, S. Stević, On a class of third-order nonlinear difference equations, Appl. Math. Comput., 213 (2009), 479–483. https://doi.org/10.1016/j.amc.2009.03.039 doi: 10.1016/j.amc.2009.03.039 |
[14] | B. Iričanin, S. Stević, On some rational difference equations, Ars Comb., 92 (2009), 67–72. |
[15] | C. Jordan, Calculus of finite differences, Chelsea Publishing Company, New York, 1965. |
[16] | G. L. Karakostas, Convergence of a difference equation via the full limiting sequences method, Differ. Equ. Dyn. Syst., 1 (1993), 289–294. |
[17] | G. L. Karakostas, Asymptotic 2-periodic difference equations with diagonally self-invertible responces, J. Differ. Equ. Appl., 6 (2000), 329–335. https://doi.org/10.1080/10236190008808232 doi: 10.1080/10236190008808232 |
[18] | G. L. Karakostas, Asymptotic behavior of the solutions of the difference equation $x_{n+1} = x_n^2f(x_{n-1})$, J. Differ. Equ. Appl., 9 (2003), 599–602. https://doi.org/10.1080/1023619021000056329 doi: 10.1080/1023619021000056329 |
[19] | W. A. Kosmala, A friendly introduction to analysis, 2 Eds., Pearson, Upper Saddle River, New Jersey, 2004. |
[20] | V. A. Krechmar, A problem book in algebra, Mir Publishers, Moscow, 1974. |
[21] | S. F. Lacroix, Traité des differénces et des séries (in French), J. B. M. Duprat, Paris, 1800. |
[22] | S. F. Lacroix, An elementary treatise on the differential and integral calculus, J. Smith, Cambridge, 1816. |
[23] | J. L. Lagrange, Sur l'intégration d'une équation différentielle à différences finies, qui contient la théorie des suites récurrentes (in French), Miscellanea Taurinensia, 1759, 33–42. |
[24] | P. S. Laplace, Recherches sur l'intégration des équations différentielles aux différences finies et sur leur usage dans la théorie des hasards (in French), (Laplace OEuvres, Ⅷ (1891), 69–197), Mém. Acad. R. Sci. Paris, Ⅶ (1776). |
[25] | H. Levy, F. Lessman, Finite difference equations, The Macmillan Company, New York, NY, USA, 1961. |
[26] | A. A. Markoff, Differenzenrechnung (in German), Teubner, Leipzig, 1896. |
[27] | D. S. Mitrinović, D. D. Adamović, Nizovi i redovi/sequences and series (in Serbian), Naučna Knjiga, Beograd, Serbia, 1980. |
[28] | D. S. Mitrinović, J. D. Kečkić, Metodi izračunavanja konačnih zbirova/methods for calculating finite sums (in Serbian), Naučna Knjiga, Beograd, 1984. |
[29] | G. Papaschinopoulos, C. J. Schinas, Invariants for systems of two nonlinear difference equations, Differ. Equ. Dyn. Syst., 7 (1999), 181–196. |
[30] | G. Papaschinopoulos, C. J. Schinas, Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Anal. Theory Methods Appl., 46 (2001), 967–978. |
[31] | G. Papaschinopoulos, C. J. Schinas, G. Stefanidou, On a difference equation with 3-periodic coefficient, J. Differ. Equ. Appl., 11 (2005), 1281–1287. https://doi.org/10.1080/10236190500386317 doi: 10.1080/10236190500386317 |
[32] | G. Papaschinopoulos, C. J. Schinas, G. Stefanidou, On a $k$-order system of Lyness-type difference equations, Adv. Differ. Equ., 2007 (2007), 1–13. https://doi.org/10.1155/2007/31272 doi: 10.1155/2007/31272 |
[33] | G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class of rational difference equations, Int. J. Differ. Equ., 5 (2010), 233–249. |
[34] | C. J. Schinas, Invariants for difference equations and systems of difference equations of rational form, J. Math. Anal. Appl., 216 (1997), 164–179. https://doi.org/10.1006/jmaa.1997.5667 doi: 10.1006/jmaa.1997.5667 |
[35] | C. J. Schinas, Invariants for some difference equations, J. Math. Anal. Appl., 212 (1997), 281–291. https://doi.org/10.1006/jmaa.1997.5499 doi: 10.1006/jmaa.1997.5499 |
[36] | S. Stević, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math., 33 (2002), 45–53. |
[37] | S. Stević, On the recursive sequence $x_{n+1} = A/\prod_{i = 0}^k x_{n-i}+1/\prod_{j = k+2}^{2(k+1)}x_{n-j}, $ Taiwanese J. Math., 7 (2003), 249–259. |
[38] | S. Stević, On the recursive sequence $x_{n+1} = {\alpha}_n+(x_{n-1}/x_n)$ Ⅱ, Dyn. Contin. Discrete Impuls. Syst., 10a (2003), 911–916. |
[39] | S. Stević, Asymptotic periodicity of a higher order difference equation, Discrete Dyn. Nat. Soc., 2007 (2007), 1–9. https://doi.org/10.1155/2007/13737 doi: 10.1155/2007/13737 |
[40] | S. Stević, Boundedness character of a class of difference equations, Nonlinear Anal. Theory Methods Appl., 70 (2009), 839–848. https://doi.org/10.1016/j.na.2008.01.014 doi: 10.1016/j.na.2008.01.014 |
[41] | S. Stević, Global stability of a difference equation with maximum, Appl. Math. Comput., 210 (2009), 525–529. https://doi.org/10.1016/j.amc.2009.01.050 doi: 10.1016/j.amc.2009.01.050 |
[42] | S. Stević, On the system of difference equations $x_n = c_ny_{n-3}/(a_n+b_ny_{n-1}x_{n-2}y_{n-3})$, $y_n = {\gamma}_n x_{n-3}/({\alpha}_n+{\beta}_n x_{n-1}y_{n-2}x_{n-3})$, Appl. Math. Comput., 219 (2013), 4755–4764. |
[43] | S. Stević, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ., 2014 (2014), 1–15. https://doi.org/10.14232/ejqtde.2014.1.67 doi: 10.14232/ejqtde.2014.1.67 |
[44] | S. Stević, Representations of solutions to linear and bilinear difference equations and systems of bilinear difference equations, Adv. Differ. Equ., 2018 (2018), 1–21. https://doi.org/10.1186/s13662-018-1930-2 doi: 10.1186/s13662-018-1930-2 |
[45] | S. Stević, J. Diblik, B. Iričanin, Z. Šmarda, On a solvable system of rational difference equations, J. Differ. Equ. Appl., 20 (2014), 811–825. https://doi.org/10.1080/10236198.2013.817573 doi: 10.1080/10236198.2013.817573 |
[46] | S. Stević, J. Diblik, B. Iričanin, Z. Šmarda, Solvability of nonlinear difference equations of fourth order, Electron. J. Differ. Equ., 2014 (2014), 1–14. |
[47] | S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, On a nonlinear second-order difference equation, J. Inequal. Appl., 2022 (2022), 1–11. https://doi.org/10.1186/s13660-022-02822-z doi: 10.1186/s13660-022-02822-z |
[48] | S. Stević, B. Iričanin, Z. Šmarda, On a product-type system of difference equations of second order solvable in closed form, J. Inequal. Appl., 2015 (2015), 1–15. https://doi.org/10.1186/s13660-015-0835-9 doi: 10.1186/s13660-015-0835-9 |
[49] | S. Stević, B. Iričanin, Z. Šmarda, On a symmetric bilinear system of difference equations, Appl. Math. Lett., 89 (2019), 15–21. https://doi.org/10.1016/j.aml.2018.09.006 doi: 10.1016/j.aml.2018.09.006 |
[50] | N. N. Vorobiev, Fibonacci numbers, Birkhäuser, Basel, 2002. |