In this article, the Korteweg-de Vries-Caudrey-Dodd-Gibbon (KdV-CDG) equation is explored via a fractional operator. A nonlocal differential operator with a nonsingular kernel is used to study the KdV-CDG equation. Some theoretical features concerned with the existence and uniqueness of the solution, convergence, and Picard-stability of the solution by using the concepts of fixed point theory are discussed. Analytical solutions of the KdV-CDG equation by using the Laplace transformation (LT) associated with the Adomian decomposition method (ADM) are retrieved. The solutions are presented using 3D and surface graphics.
Citation: Ihsan Ullah, Aman Ullah, Shabir Ahmad, Hijaz Ahmad, Taher A. Nofal. A survey of KdV-CDG equations via nonsingular fractional operators[J]. AIMS Mathematics, 2023, 8(8): 18964-18981. doi: 10.3934/math.2023966
In this article, the Korteweg-de Vries-Caudrey-Dodd-Gibbon (KdV-CDG) equation is explored via a fractional operator. A nonlocal differential operator with a nonsingular kernel is used to study the KdV-CDG equation. Some theoretical features concerned with the existence and uniqueness of the solution, convergence, and Picard-stability of the solution by using the concepts of fixed point theory are discussed. Analytical solutions of the KdV-CDG equation by using the Laplace transformation (LT) associated with the Adomian decomposition method (ADM) are retrieved. The solutions are presented using 3D and surface graphics.
[1] | C. H. Su, C. S. Gardner, Korteweg-de Vries equation and generalizations III. Derivation of the Korteweg-de Vries equation and Burgers equation, J. Math. Phys., 10 (1969), 536–539. https://doi.org/10.1063/1.1664873 doi: 10.1063/1.1664873 |
[2] | A. M. Wazwaz, Two-mode fifth order KdV equations: necessary conditions for multiple-soliton solutions to exist, Nonlinear Dyn., 87 (2017), 1685–1691. https://doi.org/10.1007/s11071-016-3144-z doi: 10.1007/s11071-016-3144-z |
[3] | H. Ahmad, T. A. Khan, S. W. Yao, An efficient approach for the numerical solution of fifth-order KdV equations, Open Math., 18 (2020), 738–748. https://doi.org/10.1515/math-2020-0036 doi: 10.1515/math-2020-0036 |
[4] | A. M. Wazwaz, Two new integrable modified KdV equations, of third-and fifth-order, with variable coefficients: multiple real and multiple complex soliton solutions, Waves Random Complex Media, 31 (2021), 867–878. https://doi.org/10.1080/17455030.2019.1631504 doi: 10.1080/17455030.2019.1631504 |
[5] | M. S. Islam, K. Khan, M. A. Akbar, An analytical method for finding exact solutions of modified Korteweg-de Vries equation, Results Phys., 5 (2015), 131–135. https://doi.org/10.1016/j.rinp.2015.01.007 doi: 10.1016/j.rinp.2015.01.007 |
[6] | K. Hosseini, A. Akbulut, D. Baleanu, S. Salahshour, M. Mirzazadeh, K. Dehingia, The Korteweg-de Vries-Caudrey-Dodd-Gibbon dynamical model: its conservation laws, solitons, and complexiton, 2022, unpublished work. https://doi.org/10.1016/j.joes.2022.06.003 |
[7] | T. Muhammad, H. Ahmad, U. Farooq, A. Akgül, Computational investigation of magnetohydrodynamics boundary of Maxwell fluid across nanoparticle-filled sheet, Al-Salam J. Eng. Technol., 2 (2023), 88–97. |
[8] | F. Wang, K. Zheng, I. Ahmad, H. Ahmad, Gaussian radial basis functions method for linear and nonlinear convection-diffusion models in physical phenomena, Open Phys., 19 (2021), 69–76. https://doi.org/10.1515/phys-2021-0011 doi: 10.1515/phys-2021-0011 |
[9] | M. Nawaz, I. Ahmad, H. Ahmad, A radial basis function collocation method for space-dependent inverse heat problems, J. Appl. Comput. Mech., 6 (2020), 1187–1199. https://doi.org/10.22055/JACM.2020.32999.2123 doi: 10.22055/JACM.2020.32999.2123 |
[10] | F. Wang, J. Zhang, I. Ahmad, A. Farooq, H. Ahmad, A novel meshfree strategy for a viscous wave equation with variable coefficients, Front. Phys., 9 (2021), 701512. https://doi.org/10.3389/fphy.2021.701512 doi: 10.3389/fphy.2021.701512 |
[11] | M. Shakeel, I. Hussain, H. Ahmad, I. Ahmad, P. Thounthong, Y. F. Zhang, Meshless technique for the solution of time-fractional partial differential equations having real-world applications, J. Funct. Spaces, 2020 (2020), 8898309. https://doi.org/10.1155/2020/8898309 doi: 10.1155/2020/8898309 |
[12] | S. Ali, A. Ullah, S. Ahmad, K. Nonlaopon, A. Akgül, Analysis of Kink behaviour of KdV-mKdV equation under Caputo fractional operator with non-singular kernel, Symmetry, 14 (2022), 2316. https://doi.org/10.3390/sym14112316 doi: 10.3390/sym14112316 |
[13] | R. T. Alqahtani, S. Ahmad, A. Akgül, Dynamical analysis of bio-ethanol production model under generalized nonlocal operator in Caputo sense, Mathematics, 9 (2021), 2370. https://doi.org/10.3390/math9192370 doi: 10.3390/math9192370 |
[14] | I. Ahmad, H. Ahmad, M. Inc, S. W. Yao, B. Almohsen, Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer, Therm. Sci., 24, (2020), 95–105. https://doi.org/10.2298/TSCI20S1095A |
[15] | M. N. Khan, I. Ahmad, A. Akgül, H. Ahmad, P. Thounthong, Numerical solution of time-fractional coupled Korteweg-de Vries and Klein-Gordon equations by local meshless method, Pramana, 95 (2021), 6. https://doi.org/10.1007/s12043-020-02025-5 doi: 10.1007/s12043-020-02025-5 |
[16] | Z. A. Khan, J. Khan, S. Saifullah, A. Ali, Dynamics of Hidden attractors in four-dimensional dynamical systems with power law, J. Funct. Spaces, 2022 (2022), 3675076. https://doi.org/10.1155/2022/3675076 doi: 10.1155/2022/3675076 |
[17] | S. Saifullah, A. Ali, Z. A. Khan, Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel, AIMS Math., 7 (2022), 5275–5290. https://doi.org/10.3934/math.2022293 doi: 10.3934/math.2022293 |
[18] | K. Hosseini, M. Ilie, M. Mirzazadeh, A. Yusuf, T. A. Sulaiman, D. Baleanue, et al., An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense, Math. Comput. Simul., 187 (2021), 248–260. https://doi.org/10.1016/j.matcom.2021.02.021 doi: 10.1016/j.matcom.2021.02.021 |
[19] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[20] | K. Hosseini, M. Ilie, M. Mirzazadeh, D. Baleanu, C. Park, S. Salahshour, The Caputo-Fabrizio time-fractional Sharma-Tasso-Olver-Burgers equation and its valid approximations, Commun. Theor. Phys., 74 (2022), 075003. https://doi.org/10.1088/1572-9494/ac633e doi: 10.1088/1572-9494/ac633e |
[21] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[22] | S. Ahmad, A. Ullah, M. Partohaghighi, S. Saifullah, A. Akgül, F. Jarad, Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model, AIMS Math., 7 (2021), 4778–4792. https://doi.org/10.3934/math.2022265 doi: 10.3934/math.2022265 |
[23] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv, 2016. https://doi.org/10.48550/arXiv.1602.03408 |
[24] | C. J. Xu, Z. X. Liu, Y. C. Pang, S. Saifullah, M. Inc, Oscillatory, crossover behavior and chaos analysis of HIV-1 infection model using piece-wise Atangana-Baleanu fractional operator: real data approach, Chaos Solit Fract., 164 (2022), 112662. https://doi.org/10.1016/j.chaos.2022.112662 doi: 10.1016/j.chaos.2022.112662 |
[25] | S. Saifullah, A. Ali, M. Irfan, K. Shah, Time-fractional Klein-Gordon equation with solitary/shock waves solutions, Math. Probl. Eng., 2021 (2021), 6858592. https://doi.org/10.1155/2021/6858592 doi: 10.1155/2021/6858592 |
[26] | K. Hosseini, M. Ilie, M. Mirzazadeh, D. Baleanu, An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law, Math. Methods Appl. Sci., 44 (2021), 6247–6258. https://doi.org/10.1002/mma.7059 doi: 10.1002/mma.7059 |
[27] | M. A. Bayrak, A. Demir, E. Ozbilge, On solution of fractional partial differential equation by the weighted fractional operator, Alexandria Eng. J., 59 (2020), 4805–4819. https://doi.org/10.1016/j.aej.2020.08.044 doi: 10.1016/j.aej.2020.08.044 |
[28] | Gulalai, S. Ahmad, F. A. Rihan, A. Ullah, Q. M. Al-Mdallal, A. Akgül, Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative, AIMS Math., 7 (2022), 7847–7865. https://doi.org/10.3934/math.2022439 doi: 10.3934/math.2022439 |
[29] | A. S. Alshehry, M. Imran, R. Shah, W. Weera, Fractional-view analysis of Fokker-Planck Symmetry, 14 (2022), 1513. https://doi.org/10.3390/sym14081513 |