The Sombor index of a graph $ G $, introduced by Ivan Gutman, is defined as the sum of the weights $ \sqrt{d_G(u)^2+d_G(v)^2} $ of all edges $ uv $ of $ G $, where $ d_G(u) $ denotes the degree of vertex $ u $ in $ G $. The Sombor coindex was recently defined as $ \overline{SO}(G) = \sum_{uv\notin E(G)}\sqrt{d_G(u)^2+d_G(v)^2} $. As a new vertex-degree-based topological index, the Sombor index is important because it has been proved to predict certain physicochemical properties. Two-trees are very important structures in complex networks. In this paper, the maximum and second maximum Sombor index, the minimum and second minimum Sombor coindex of two-trees and the extremal two-trees are determined, respectively. Besides, some problems are proposed for further research.
Citation: Zenan Du, Lihua You, Hechao Liu, Yufei Huang. The Sombor index and coindex of two-trees[J]. AIMS Mathematics, 2023, 8(8): 18982-18994. doi: 10.3934/math.2023967
The Sombor index of a graph $ G $, introduced by Ivan Gutman, is defined as the sum of the weights $ \sqrt{d_G(u)^2+d_G(v)^2} $ of all edges $ uv $ of $ G $, where $ d_G(u) $ denotes the degree of vertex $ u $ in $ G $. The Sombor coindex was recently defined as $ \overline{SO}(G) = \sum_{uv\notin E(G)}\sqrt{d_G(u)^2+d_G(v)^2} $. As a new vertex-degree-based topological index, the Sombor index is important because it has been proved to predict certain physicochemical properties. Two-trees are very important structures in complex networks. In this paper, the maximum and second maximum Sombor index, the minimum and second minimum Sombor coindex of two-trees and the extremal two-trees are determined, respectively. Besides, some problems are proposed for further research.
[1] | A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math., 158 (2010), 1571–1578. https://doi.org/10.1016/j.dam.2010.05.017 doi: 10.1016/j.dam.2010.05.017 |
[2] | R. Aguilar-Sánchez, J. A. Méndez-Bermúdez, J. M. Rodríguez, J. M. Sigarreta, Normalized Sombor indices as complexity measures of random networks, Entropy, 23 (2021), 1–17. https://doi.org/10.3390/e23080976 doi: 10.3390/e23080976 |
[3] | M. B. Belay, C. X. Wang, The first general Zagreb coindex of graph operations, Appl. Math. Nonlinear Sci., 5 (2020), 109–120. https://doi.org/10.2478/amns.2020.2.00020 doi: 10.2478/amns.2020.2.00020 |
[4] | J. H. Cochrane, F. A. Longstaff, P. Santa-Clara, Two trees, Rev. Financ. Stud., 21 (2008), 347–385. https://doi.org/10.1093/rfs/hhm059 doi: 10.1093/rfs/hhm059 |
[5] | J. C. Dearden, The use of topological indices in QSAR and QSPR modeling, In: Advances in QSAR modeling, Cham: Springer, 2017, 57–88. https://doi.org/10.1007/978-3-319-56850-8_2 |
[6] | K. C. Das, Y. L. Shang, Some extremal graphs with respect to Sombor index, Mathematics, 9 (2021), 1–15. https://doi.org/10.3390/math9111202 doi: 10.3390/math9111202 |
[7] | A. Ghalavand, A. R. Ashrafi, On forgotten coindex of chemical graphs, MATCH Commun. Math. Comput. Chem., 83 (2020), 221–232. |
[8] | I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem., 74 (2015), 5–16. |
[9] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
[10] | W. Gao, W. F. Wang, M. R. Farahani, Topological indices study of molecular structure in anticancer drugs, J. Chem., 2016 (2016), 1–8. https://doi.org/10.1155/2016/3216327 doi: 10.1155/2016/3216327 |
[11] | J. C. Hernández, J. M. Rodríguez, O. Rosario, J. M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math., 7 (2022), 8330–8343. https://doi.org/10.3934/math.2022464 doi: 10.3934/math.2022464 |
[12] | A. Jahanbani, H. Shooshtari, Y. L. Shang, Extremal trees for the Randić index, Acta Univ. Sapientiae Math., 14 (2022), 239–249. https://doi.org/10.2478/ausm-2022-0016 doi: 10.2478/ausm-2022-0016 |
[13] | K. Q. Liu, On the Harmonic index of two-tree, Math. Pract. Theory, 50 (2020), 99–103. |
[14] | J. B. Liu, M. M. Matejić, E. I. Milovanović, I. Ž. Milovanović, Some new inequalities for the forgotten topological index and coindex of graphs, MATCH Commun. Math. Comput. Chem., 84 (2020), 719–738. |
[15] | J. B. Liu, J. J. Gu, K. Wang, The expected values for the Gutman index, Schultz index, and some Sombor indices of a random cyclooctane chain, Int. J. Quantum Chem., 123 (2023), e27022. https://doi.org/10.1002/qua.27022 doi: 10.1002/qua.27022 |
[16] | H. C. Liu, L. H. You, Y. F. Huang, Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem., 87 (2022), 5–22. https://doi.org/10.46793/match.87-1.005L doi: 10.46793/match.87-1.005L |
[17] | H. C. Liu, I. Gutman, L. H. You, Y. F. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y |
[18] | C. Phanjoubam, S. M. Mawiong, A. M. Buhphang, On Sombor coindex of graphs, Commun. Comb. Optim., 8 (2023), 513–529. https://doi.org/10.22049/CCO.2022.27751.1343 doi: 10.22049/CCO.2022.27751.1343 |
[19] | T. Réti, T. Došlic, A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006 doi: 10.47443/cm.2021.0006 |
[20] | I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. https://doi.org/10.2298/JSC201215006R doi: 10.2298/JSC201215006R |
[21] | Y. L. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881 |
[22] | X. L. Sun, Y. B. Gao, J. W. Du, The harmonic index of two-trees and quasi-tree graphs, J. Math. Inequal., 13 (2019), 479–493. https://doi.org/10.7153/jmi-2019-13-32 doi: 10.7153/jmi-2019-13-32 |
[23] | X. L. Sun, Y. B. Gao, J. W. Du, Multiplicative sum Zagreb index of two-trees (Chinese), J. Shanxi Univ. Nat. Sci. Ed., 45 (2022), 1174–1178. https://doi.org/10.13451/j.sxu.ns.2021087 doi: 10.13451/j.sxu.ns.2021087 |
[24] | N. Trinajstic, Chemical graph theory, 2 Eds., Boca Raton: CRC Press, 1992. |
[25] | S. Y. Yu, Study on extremum Randić index of two-tree graph, J. Lanzhou Univ. Arts Sci. Nat. Sci., 29 (2015), 29–31. https://doi.org/10.13804/j.cnki.2095-6991.2015.02.008 doi: 10.13804/j.cnki.2095-6991.2015.02.008 |
[26] | S. Y. Yu, H. X. Zhao, Y. P. Mao, Y. Z. Xiao, On the atom-bond connectivity index of two-trees, J. Math. Res. Appl., 36 (2016), 140–150. https://doi.org/10.3770/j.issn:2095-2651.2016.02.002 doi: 10.3770/j.issn:2095-2651.2016.02.002 |
[27] | Z. Z. Zhang, H. X. Liu, B. Wu, T. Zou, Spanning trees in a fractal scale-free lattice, Phys. Rev. E, 83 (2011), 016116. https://doi.org/10.1103/PhysRevE.83.016116 doi: 10.1103/PhysRevE.83.016116 |