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Abstract: The Sombor index of a graph G, introduced by Ivan Gutman, is defined as the sum of
the weights

√
dG(u)2 + dG(v)2 of all edges uv of G, where dG(u) denotes the degree of vertex u in G.

The Sombor coindex was recently defined as S O(G) =
∑

uv<E(G)

√
dG(u)2 + dG(v)2. As a new vertex-

degree-based topological index, the Sombor index is important because it has been proved to predict
certain physicochemical properties. Two-trees are very important structures in complex networks. In
this paper, the maximum and second maximum Sombor index, the minimum and second minimum
Sombor coindex of two-trees and the extremal two-trees are determined, respectively. Besides, some
problems are proposed for further research.

Keywords: Sombor index; Sombor coindex; two-tree
Mathematics Subject Classification: 05C09, 05C92

1. Introduction

Throughout this paper, let G be a simple graph with vertex set V(G) and edge set E(G). Let |V(G)|
and |E(G)| denote the order and the number of edges of G, respectively. If two vertices u, v are adjacent,
we write u ∼ v; if u, v are non-adjacent, we write u / v. Let NG(v) be the set of all vertices adjacent to
v and dG(v) = |NG(v)| be the degree of a vertex v ∈ V(G). If there is no confusion from the context, we
abbreviate dG(v) by d(v). The complement G of a graph G is the graph with vertex set V(G), in which
two vertices are adjacent if and only if they are not adjacent in G. Let Kn, Ka,b be the complete graph
of order n, complete bipartite graph of order a + b, respectively.

In the chemical and pharmaceutical sciences, topological indices are graph invariants that play
a significant role [24]. Molecular models can be used to study chemical graphs in which vertices
represent atoms and edges between vertices represent chemical bonds. In recent years, many
topological indices have been introduced and applied in various fields of science including structural
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chemistry, theoretical chemistry, environmental chemistry, etc. [5, 10]. There are several types of
topological indices, one of the most important being vertex-degree-based topological indices. For
instance, Ivan Gutman introduced the Sombor index, defined as [9]:

S O(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

The Sombor coindex was first considered in [19] and was recently defined as [18]:

S O(G) =
∑

uv<E(G)

√
dG(u)2 + dG(v)2.

Determining the extreme values of topological indices of different graph classes has always been
the focus and hot research issue of chemical graph theory, and the results provide mathematical
methods and tools for analyzing the structures of compounds with physical or chemical properties.
It is verified that the Sombor index has good prediction and identification ability for the simulation
of alkane vaporization entropy and vaporization enthalpy [20]. Recently, the Sombor index has
a good application in networks [2, 21]. At present, the research on topological indices mainly
includes graph operations, indices of graphs and (in)equalities, the correlation results can be found
in [1, 3, 6–8, 11, 14–17].

The two-tree Tt was defined in [4] as follows: (1) T0 � K2 where K2 is a two-tree with 2 vertices;
(2) Tt (t ≥ 1) is a two-tree obtained from Tt−1 by adding a new vertex adjacent to the two end vertices
of one edge. Two-trees are very important structures in complex networks, such as generalized Farey
graph and fractal scale-free network [27]. At present, the extreme values of the Randić index, Harmonic
index, Multiplicative Sum Zagreb index and ABC index of two-trees have been determined (see [12,
13, 22, 23, 25, 26]), while the extreme values of the Sombor (co)index of two-trees are unknown. In
order to perfect the extreme values of two-trees under different indices, we consider the extreme values
of the Sombor (co)index of two-trees.

The organization of this paper is as follows: In Section 2, the maximum and second maximum
Sombor index, the minimum and second minimum Sombor coindex of two-trees are determined,
respectively. Moreover, the two-trees with these extreme Sombor (co)index are characterized. In
Section 3, some problems are proposed for further research.

2. Extreme Sombor index and Sombor coindex of two-trees

In this section, the maximum and second maximum Sombor index, the minimum and second
minimum Sombor coindex of two-trees are determined by mathematical induction and analytical
structure method.

It is clear that Tt (t ≥ 1) has at least two vertices of degree 2 and |V(Tt)| = t + 2. Let Xn denote the
graph obtained from K2,n−2 by joining an edge between the two vertices of degree n − 2 and Ln denote
the graph obtained from Xn−1 by adding a new vertex and connecting it with a 2-degree vertex and a
(n − 2)-degree vertex. Both Xn, Ln (see Figures 1, 2) are two-trees.

We first prove some lemmas in preparation for the main results.
By the definition of the Sombor index and Sombor coindex, we have the following results.
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Figure 1. The two-tree Xn.
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Figure 2. The two-tree Ln.

Proposition 2.1. The Sombor index and Sombor coindex of two-trees Xn and Ln are

S O(Xn) =
√

2(n − 1) + 2(n − 2)
√

(n − 1)2 + 4, S O(Xn) =
√

2(n − 2)(n − 3),

S O(Ln) =(n − 4)
√

(n − 2)2 + 4 + (n − 3)
√

(n − 1)2 + 4 +
√

(n − 1)2 + (n − 2)2

+
√

13 +
√

(n − 1)2 + 9 +
√

(n − 2)2 + 9,

S O(Ln) =
√

2(n − 3)(n − 4) +
√

(n − 2)2 + 4 +
√

13(n − 4).

Proof. Firstly, it is easy to check that dXn(v1) = dXn(v2) = n − 1, dXn(vi) = 2 for 3 ≤ i ≤ n, E(Xn) =
{v1v2, v1v3, v1v4, · · · , v1vn, v2v3, v2v4, · · · , v2vn} and E(Xn) is composed by the edges formed by any two
vertices in {v3, v4, · · · , vn}. Then we have

S O(Xn) =
∑

uv∈E(Xn)

√
dG(u)2 + dG(v)2 =

√
(n − 1)2 + (n − 1)2 + 2(n − 2)

√
(n − 1)2 + 22,

S O(Xn) =
∑

uv<E(Xn)

√
dG(u)2 + dG(v)2 =

(
n−2

2

)√
22 + 22 =

√
2(n − 2)(n − 3).

Secondly, it is easy to check that dLn(v1) = n − 2, dLn(v2) = n − 1, dLn(vi) = 2 for i ∈ {3, 4, · · · , n −
3, n − 2, n}, dLn(vn−1) = 3, E(Ln) = {v1v2, v1v3, v1v4, · · · , v1vn−1, v2v3, v2v4, · · · , v2vn−1, v2vn, vn−1vn},
E(Ln) = {v1vn, v3vn−1, v4vn−1, · · · , vn−2vn−1}∪E′, where E′ is composed by the edges formed by any two
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vertices in {v3, v4, · · · , vn−3, vn−2, vn}. Then we have

S O(Ln) =
∑

uv∈E(Ln)

√
dG(u)2 + dG(v)2

=
√

(n − 1)2 + (n − 2)2 + (n − 4)
√

(n − 2)2 + 22 + (n − 3)
√

(n − 1)2 + 22

+
√

22 + 32 +
√

(n − 1)2 + 32 +
√

(n − 2)2 + 32,

S O(Ln) =
∑

uv<E(Ln)

√
dG(u)2 + dG(v)2

=
(

n−3
2

)√
22 + 22 +

√
(n − 2)2 + 22 + (n − 4)

√
22 + 32

=
√

2(n − 3)(n − 4) +
√

(n − 2)2 + 4 +
√

13(n − 4).

□

Lemma 2.2. Let f (x, y) =
√

x2 + y2 −
√

(x − 1)2 + (y − 1)2, 2 ≤ x, y ≤ n for some n ≥ 3. Then
f (x, y) ≤

√
2 with equality holds if and only if x = y. Moreover, if x < y, then f (x, y) is monotonic

increasing with x and f (x, y) ≤ f (n − 1, n).

Proof. We prove this conclusion in two-dimensional plane rectangular coordinate system. It is clear
that

√
x2 + y2,

√
(x − 1)2 + (y − 1)2 represent the distance between the coordinate (x, y) and (0, 0),

(1, 1), respectively. Then (x, y), (0, 0), (1, 1) form a triangle. Let e1, e2, e3 represent the edges between
(x, y) and (0, 0), (x, y) and (1, 1), (0, 0) and (1, 1), respectively. At this time, the problem is transformed
into solving the maximum value of |e1| − |e2| where |ei| represents the length of ei (i = 1, 2, 3). From the
properties of triangles, we know that the difference value between the lengths of any two edges is less
than the third edge. Thus |e1| − |e2| < |e3| =

√
2 if (0, 0), (1, 1), (x, y) are not collinear. If (0, 0), (1, 1),

(x, y) are collinear, then we have x = y and |e1| − |e2| = |e3| =
√

2 by x ≥ 2, y ≥ 2. Thus, f (x, y) ≤
√

2
with equality holds if and only if x = y.

When y > x ≥ 2, we have x2(y − 1)2 − (x − 1)2y2 = (2xy − (x + y))(y − x) > 0. Then,

∂ f (x, y)
∂x

=
x√

x2 + y2
−

x − 1√
(x − 1)2 + (y − 1)2

=

√
x2(x − 1)2 + x2(y − 1)2 −

√
x2(x − 1)2 + (x − 1)2y2√

x2 + y2
√

(x − 1)2 + (y − 1)2
> 0.

Moreover,

∂ f (y − 1, y)
∂y

=

√
(2y − 1)2

(
(y − 2)2 + (y − 1)2

)
−

√
(2y − 3)2

(
(y − 1)2 + y2

)
√

(y − 1)2 + y2
√

(y − 2)2 + (y − 1)2
> 0

by (2y − 1)2
(
(y − 2)2 + (y − 1)2

)
− (2y − 3)2

(
(y − 1)2 + y2

)
= 4(y − 1) > 0. Thus, f (x, y) ≤ f (y − 1, y) ≤

f (n − 1, n). □

Lemma 2.3. Let g(x, y) =
√

x2 + y −
√

(x − 1)2 + y, G(x, y) = g(x, y) − g(x − 1, y), where x, y > 0.
Then,
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(i) g(x, y) is monotonic increasing with x;
(ii) g(x, y) is monotonic decreasing with y;

(iii) G(x, y) is monotonic decreasing with x and G(x, y) > 0.

Proof. We consider the derivative of g(x, y),

∂g
∂x
=

x√
x2 + y

−
x − 1√

(x − 1)2 + y
=

√
x2(x − 1)2 + yx2 −

√
x2(x − 1)2 + y(x − 1)2√

x2 + y
√

(x − 1)2 + y
> 0,

∂g
∂y
=

1
2

 1√
x2 + y

−
1√

(x − 1)2 + y

 = √(x − 1)2 + y −
√

x2 + y√
x2 + y

√
(x − 1)2 + y

< 0.

Hence, g(x, y) is monotonic increasing with x and monotonic decreasing with y, and G(x, y) > 0 is
naturally.

Besides, by

∂2g
∂x2 = ∂x(

x√
x2 + y

) − ∂x(
x − 1√

(x − 1)2 + y
) = y(

1

(x2 + y)
3
2

−
1

((x − 1)2 + y)
3
2

) < 0,

we know that ∂g
∂x is monotonic decreasing with x and thus the third claim holds. □

Now we determine the maximum Sombor index of two-trees.

Theorem 2.4. Let G be a two-tree of order n ≥ 2. Then,

S O(G) ≤
√

2(n − 1) + 2(n − 2)
√

(n − 1)2 + 4,

with equality holds if and only if G � Xn.

Proof. We prove this result by induction on n.
When n = 2, 3, 4, it is clear that G � X2, X3, X4, respectively.
Assume that the result holds for n−1 (n ≥ 5). Choose a vertex w of degree 2 from the graph G, then

G − w is a two-tree of order n − 1. By the induction hypothesis, S O(G − w) ≤ S O(Xn−1) with equality
holds if and only if G − w � Xn−1. In the following we prove that S O(G) ≤ S O(Xn).

Let u and v be two vertices adjacent to the vertex w in G. Let d(u) = a, d(v) = b and NG(u) \
{v,w} = {u1, u2, · · · , ua−2}, NG(v) \ {u,w} = {v1, v2, · · · , vb−2}. By the construction of G, we know that
3 ≤ a, b ≤ n − 1. Combining with Lemmas 2.2 and 2.3, we have

S O(G) =S O(G − w) +
(√

a2 + 4 +
√

b2 + 4
)
+
(√

a2 + b2 −
√

(a − 1)2 + (b − 1)2
)

+

a−2∑
i=1

( √
a2 + d(ui)2 −

√
(a − 1)2 + d(ui)2

)
+

b−2∑
j=1

(√
b2 + d(v j)2 −

√
(b − 1)2 + d(v j)2

)
≤S O(Xn−1) + 2

√
(n − 1)2 + 4 +

√
2 +

n−3∑
i=1

( √
(n − 1)2 + d(ui)2 −

√
(n − 2)2 + d(ui)2

)
+

n−3∑
j=1

(√
(n − 1)2 + d(v j)2 −

√
(n − 2)2 + d(v j)2

)
AIMS Mathematics Volume 8, Issue 8, 18982–18994.
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≤S O(Xn−1) + 2
√

(n − 1)2 + 4 +
√

2 + 2(n − 3)
( √

(n − 1)2 + 4 −
√

(n − 2)2 + 4
)

=
[
2(n − 3)

√
(n − 2)2 + 4 +

√
2(n − 2)

]
+
√

2 + 2(n − 2)
√

(n − 1)2 + 4

− 2(n − 3)
√

(n − 2)2 + 4

=2(n − 2)
√

(n − 1)2 + 4 +
√

2(n − 1)
=S O(Xn).

For the first inequality,
√

a2 + 4+
√

b2 + 4 ≤
√

(n − 1)2 + 4+
√

(n − 1)2 + 4 is obvious.
√

a2 + b2 −√
(a − 1)2 + (b − 1)2 ≤

√
2 holds by Lemma 2.2.

∑a−2
i=1

( √
a2 + d(ui)2 −

√
(a − 1)2 + d(ui)2

)
≤∑n−3

i=1

( √
(n − 1)2 + d(ui)2 −

√
(n − 2)2 + d(ui)2

)
holds by (i) of Lemma 2.3 and a ≤ n − 1. The rest

part of the first inequality holds by the similar reason.
For the second inequality, the two sum terms are similar and we only consider the first one. In fact,( √

(n − 1)2 + d(ui)2 −
√

(n − 2)2 + d(ui)2
)
≤
( √

(n − 1)2 + 4 −
√

(n − 2)2 + 4
)

holds by (ii) of Lemma 2.3 and d(ui) ≥ 2.
Combining with the above arguments, S O(G) ≤ S O(Xn) and the equality holds if and only if

G − w � Xn−1, a = b = n − 1 and d(ui) = d(vi) = 2 for 1 ≤ i ≤ n − 3, which implies G � Xn.
Then the result holds for n, and we complete the proof. □

Next we determine the second maximum Sombor index of two-trees.

Theorem 2.5. Let G be a two-tree of order n ≥ 5 and G � Xn. Then

S O(G) ≤(n − 4)
√

(n − 2)2 + 4 + (n − 3)
√

(n − 1)2 + 4 +
√

(n − 1)2 + (n − 2)2

+
√

13 +
√

(n − 1)2 + 9 +
√

(n − 2)2 + 9,

with equality holds if and only if G � Ln.

Proof. We prove this result by induction on n.
When n = 5, G can only be isomorphic to L5 and X5, thus G � L5 by G � X5.
Assume that the result holds for n−1 (n ≥ 6). We choose one vertex w of degree 2 from G such that

G−w � Xn−1, then G−w is a two-tree of order n−1. By the induction hypothesis, S O(G−w) ≤ S O(Ln−1)
with equality holds if and only if G − w � Ln−1. In the following we prove that S O(G) ≤ S O(Ln) and
the equality holds if and only if G � Ln.

Let u and v be two vertices adjacent to the vertex w in G. Since n ≥ 6, from the definition of two-
trees we know that there must exist a vertex p with d(p) ≥ 3 which is adjacent to u and v (otherwise
G − w � Xn−1). Let d(u) = a, d(v) = b, d(p) = c and NG(u) \ {v,w, p} = {u1, u2, · · · , ua−3}, NG(v) \
{u,w, p} = {v1, v2, · · · , vb−3}. Then 3 ≤ a, b, c ≤ n − 1 and d(ui) ≥ 2, d(v j) ≥ 2 for 1 ≤ i ≤ a − 3,
1 ≤ j ≤ b − 3. Without loss of generality, we assume that a ≤ b.

Let

f (x, y, z) =
(√

x2 + 4 +
√

y2 + 4
)
+
( √

x2 + y2 −
√

(x − 1)2 + (y − 1)2
)

+
( √

x2 + z2 −
√

(x − 1)2 + z2
)
+
( √

y2 + z2 −
√

(y − 1)2 + z2
)

+

x−3∑
i=1

( √
x2 + d(ui)2 −

√
(x − 1)2 + d(ui)2

)
+

y−3∑
j=1

(√
y2 + d(v j)2 −

√
(y − 1)2 + d(v j)2

)
.
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Then we have
S O(G) = S O(G − w) + f (a, b, c). (2.1)

Next we complete the proof by the following two cases.
Case 1: b ≤ c.
Then c ≤ n − 2 since p / w and a ≤ b ≤ c ≤ n − 2, and thus f (a, b, c) ≤ f (c, c, c) by Lemmas 2.2

and 2.3. From (i) and (ii) of Lemma 2.3, we have g(c, c2) < g(n − 2, 9) by n ≥ 6. Then by (2.1),
Lemmas 2.2 and 2.3, we have

S O(G) ≤S O(Ln−1) + f (c, c, c)

≤S O(Ln−1) + 2
√

c2 + 4 +
√

2 + 2
(√

c2 + c2 −
√

(c − 1)2 + c2
)

+ 2
c−3∑
i=1

(√
c2 + 4 −

√
(c − 1)2 + 4

)
<S O(Ln−1) + 2

√
(n − 2)2 + 4 +

√
2 + 2

( √
(n − 2)2 + 9 −

√
(n − 3)2 + 9

)
+ 2(n − 5)

( √
(n − 2)2 + 4 −

√
(n − 3)2 + 4

)
=
[
(n − 5)

√
(n − 3)2 + 4 + (n − 4)

√
(n − 2)2 + 4 +

√
(n − 2)2 + (n − 3)2

+
√

(n − 2)2 + 9 +
√

(n − 3)2 + 9 +
√

13
]
+ 2
√

(n − 2)2 + 4 +
√

2

+ 2
( √

(n − 2)2 + 9 −
√

(n − 3)2 + 9
)
+ 2(n − 5)

( √
(n − 2)2 + 4 −

√
(n − 3)2 + 4

)
=3(n − 4)

√
(n − 2)2 + 4 − (n − 5)

√
(n − 3)2 + 4 +

√
(n − 2)2 + (n − 3)2

+ 3
√

(n − 2)2 + 9 −
√

(n − 3)2 + 9 +
√

2 +
√

13.

Let A1 = 3(n − 4)
√

(n − 2)2 + 4 − (n − 5)
√

(n − 3)2 + 4 +
√

(n − 2)2 + (n − 3)2 + 3
√

(n − 2)2 + 9 −√
(n − 3)2 + 9 +

√
2 +
√

13. Then

S O(Ln) − A1 =(n − 3)
√

(n − 1)2 + 4 + (n − 5)
√

(n − 3)2 + 4 − 2(n − 4)
√

(n − 2)2 + 4

+
√

(n − 1)2 + (n − 2)2 −
√

(n − 2)2 + (n − 3)2 +
√

(n − 1)2 + 9

+
√

(n − 3)2 + 9 − 2
√

(n − 2)2 + 9 −
√

2.

Let x = n − 1, y = 4 (n ≥ 6) in Lemma 2.3. Then we have

(n − 3)
√

(n − 1)2 + 4 + (n − 5)
√

(n − 3)2 + 4 − 2(n − 4)
√

(n − 2)2 + 4
=2g(n − 1, 4) + (n − 5)G(n − 1, 4)
≥2g(5, 4) +G(5, 4)
>1.8725.

It is easy to check that for n ≥ 6,
√

(n − 1)2 + (n − 2)2 −
√

(n − 2)2 + (n − 3)2 > 0, and√
(n − 1)2 + 9+

√
(n − 3)2 + 9−2

√
(n − 2)2 + 9 = G(n−1, 9) > 0 by Lemma 2.3. Hence S O(Ln)−A1 >

1.8725 −
√

2 > 0, and then S O(G) < A1 < S O(Ln).
Case 2: b > c.

AIMS Mathematics Volume 8, Issue 8, 18982–18994.
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Then we have b ≤ n − 1 and max{a, c} ≤ n − 2 (otherwise, a = b = n − 1, which implies G � Xn).
If a < b, then a ≤ n − 2, b ≤ n − 1. By (2.1), Lemmas 2.2 and 2.3, we have

S O(G) ≤S O(Ln−1) + f (n − 2, n − 3, 3)

≤S O(Ln−1) +
( √

(n − 2)2 + 4 +
√

(n − 1)2 + 4
)
+
( √

(n − 2)2 + (n − 1)2

−
√

(n − 3)2 + (n − 2)2
)
+
( √

(n − 2)2 + 9 −
√

(n − 3)2 + 9
)

+
( √

(n − 1)2 + 9 −
√

(n − 2)2 + 9
)
+ (n − 5)

( √
(n − 2)2 + 4 −

√
(n − 3)2 + 4

)
+ (n − 4)

( √
(n − 1)2 + 4 −

√
(n − 2)2 + 4

)
=(n − 3)

√
(n − 1)2 + 4 + (n − 4)

√
(n − 2)2 + 4 +

√
(n − 1)2 + (n − 2)2

+
√

13 +
√

(n − 1)2 + 9 +
√

(n − 2)2 + 9
=S O(Ln).

The equality holds if and only if G − w � Ln−1, a = n − 2, b = n − 1, c = 3, d(ui) = d(v j) = 2 for
1 ≤ i ≤ a − 3 and 1 ≤ j ≤ b − 3, which implies G � Ln.

If a = b, then a = b ≤ n − 2. By (2.1), Lemmas 2.2 and 2.3, we have

S O(G) ≤S O(Ln−1) + f (a, a, c)
≤S O(Ln−1) + f (n − 2, n − 2, 3)

≤S O(Ln−1) + 2
√

(n − 2)2 + 4 +
√

2 + 2
( √

(n − 2)2 + 9 −
√

(n − 3)2 + 9
)

+ 2(n − 5)
( √

(n − 2)2 + 4 −
√

(n − 3)2 + 4
)

=A1.

Thus S O(G) ≤ A1 < S O(Ln) by Case 1.
Combining the two cases, we have S O(G) ≤ S O(Ln) and the equality holds if and only if G � Ln.

Thus the result holds for n, and we complete the proof. □

Next we consider the minimum Sombor coindex of two-trees.

Theorem 2.6. Let G be a two-tree of order n ≥ 2. Then,

S O(G) ≥
√

2(n − 2)(n − 3),

with equality holds if and only if G � Xn.

Proof. We prove this result by induction on n.
When n = 2, 3, 4, G can only be isomorphic to X2, X3, X4, respectively.
Assume that the result holds for n − 1 (n ≥ 5). Let w be a vertex of G with degree 2. Then G − w is

a two-tree of order n − 1. By the induction hypothesis, S O(G − w) ≥ S O(Xn−1) with equality holds if
and only if G − w � Xn−1. In the following we prove that S O(G) ≥ S O(Xn).
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Let NG(w) = {u, v}, V(G)\{u, v,w} = {t1, t2, · · · , tn−3} and d(u) = a, d(v) = b. Then 3 ≤ a, b ≤ n − 1,
d(ti) ≥ 2 for 1 ≤ i ≤ n − 3,

√
x2 + y2 −

√
(x − 1)2 + y2 > 0 for 3 ≤ x ≤ n − 1, and

S O(G) =S O(G − w) +
∑
ti/u

( √
a2 + d(ti)2 −

√
(a − 1)2 + d(ti)2

)
+
∑
ti/v

( √
b2 + d(ti)2 −

√
(b − 1)2 + d(ti)2

)
+

n−3∑
i=1

√
4 + d(ti)2

≥S O(Xn−1) +
√

8(n − 3)

=S O(Xn).

If a = b = n − 1, then the first two summations are equal to 0 since no vertices are non-adjacent to
u, v.

Thus S O(G) ≥ S O(Xn) with equality holds if and only if G − w � Xn−1, a = b = n − 1 and d(ti) = 2
for 1 ≤ i ≤ n − 3, which implies G � Xn. Then the result holds for n, and we complete the proof. □

Finally, we consider the second minimum Sombor coindex of two-trees.

Lemma 2.7. Let h(x, y) =
√

y2 + x2 −
√

(y − 1)2 + x2 +
√

4 + x2 where x > 0, y ≥ 3. Then h(x, y) is
monotonic increasing with x.

Proof. The derivative of function h(x, y) with respect to x is

h′(x) =
x√

y2 + x2
−

x√
(y − 1)2 + x2

+
x

√
4 + x2

.

Then h′(x) > 0 since

1
√

4 + x2
−

1√
(y − 1)2 + x2

=

√
(y − 1)2 + x2 −

√
4 + x2√

(y − 1)2 + x2
√

4 + x2
≥ 0.

□

Theorem 2.8. Let G ba a two-tree of order n ≥ 5 and G � Xn. Then,

S O(G) ≥
√

2(n − 3)(n − 4) +
√

(n − 2)2 + 4 +
√

13(n − 4),

with equality holds if and only if G � Ln.

Proof. We prove the result by induction on n.
For n = 5, G can only be isomorphic to L5.
Assume that the result holds for n−1 (n ≥ 6). Let w be a vertex of G with degree 2 such that G−w �

Xn−1. Then G − w is a two-tree of order n − 1. By the induction hypothesis, S O(G − w) ≥ S O(Ln−1)
with equality holds if and only if G − w � Ln−1. In the following we prove that S O(G) ≥ S O(Ln).

Let NG(w) = {u, v}, d(u) = a and d(v) = b. Then 3 ≤ a, b ≤ n − 1. From the definition of two-
trees and G � Xn, there must exist a vertex p with d(p) = c ≥ 3 such that p ∼ u and p ∼ v. Let
V(G) \ {u, v,w} = {t1, t2, · · · , tn−5, tn−4, p}. Without loss of generality, we assume a ≤ b. By G � Xn, we
have a ≤ n − 2. Then by Lemmas 2.2, 2.3 and 2.7, we have
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S O(G) =S O(G − w) +
∑
ti/u

( √
a2 + d(ti)2 −

√
(a − 1)2 + d(ti)2

)
+
∑
ti/v

( √
b2 + d(ti)2 −

√
(b − 1)2 + d(ti)2

)
+

n−4∑
i=1

√
4 + d(ti)2 +

√
4 + c2

≥S O(Ln−1) +
∑
ti/u

( √
a2 + d(ti)2 −

√
(a − 1)2 + d(ti)2

)
+

n−4∑
i=1

√
4 + d(ti)2 +

√
4 + c2 (2.2)

=S O(Ln−1) +
∑
ti/u

( √
a2 + d(ti)2 −

√
(a − 1)2 + d(ti)2 +

√
4 + d(ti)2

)
+
∑
ti∼u

√
4 + d(ti)2 +

√
4 + c2

≥S O(Ln−1) +
∑
ti/u

(√
a2 + 4 −

√
(a − 1)2 + 4 +

√
4 + 4

)
+
∑
ti∼u

√
4 + 4 +

√
4 + 32 (2.3)

=S O(Ln−1) +
∑
ti/u

(√
a2 + 4 −

√
(a − 1)2 + 4

)
+ 2
√

2(n − 4) +
√

13

≥S O(Ln−1) +
( √

(n − 2)2 + 4 −
√

(n − 3)2 + 4
)
+ 2
√

2(n − 4) +
√

13 (2.4)

=
√

2(n − 3)(n − 4) +
√

13(n − 4) +
√

(n − 2)2 + 4

=S O(Ln).

The (2.2) holds by
∑

ti/v

( √
b2 + d(ti)2 −

√
(b − 1)2 + d(ti)2

)
≥ 0 and S O(G −w) ≥ S O(Ln−1), where

the equality holds if and only if b = n − 1 and G − w � Ln−1.
By Lemma 2.7, we have h(d(ti), a) is monotonic increasing with d(ti). Thus (2.3) holds, where the

equality holds if and only if d(p) = 3, d(ti) = 2 for 1 ≤ i ≤ n − 4.
It is not difficult to find that

∑
ti/u

(√
a2 + 4 −

√
(a − 1)2 + 4

)
has n−1−a summation terms by d(u) = a

and dG(u) + dG(u) = n − 1. Then for a ≤ n − 3, by n − 1 − a ≥ 2 and
√

a2 + 4 −
√

(a − 1)2 + 4 ≥
√

32 + 4 −
√

22 + 4 > 0.776, we have∑
ti/u

(√
a2 + 4 −

√
(a − 1)2 + 4

)
= (n − 1 − a)(

√
a2 + 4 −

√
(a − 1)2 + 4) > 1.

For a = n − 2, ∑
ti/u

(√
a2 + 4 −

√
(a − 1)2 + 4

)
=
√

(n − 2)2 + 4 −
√

(n − 3)2 + 4 < 1,

since
√

(n − 2)2 + 4−
√

(n − 3)2 + 4 represents the difference between the distance from the coordinate
(n − 2, 2) to the coordinates (0, 0) and (1, 0). Thus (2.4) holds, where the equality holds if and only if
a = n − 2.

Thus S O(G) ≥ S O(Ln) with equality holds if and only if G − w � Ln−1, a = n − 2, b = n − 1, c = 3
and d(ti) = 2 for 1 ≤ i ≤ n − 4, which implies G � Ln.

Then the result holds for n, and we complete the proof. □
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3. Conclusions

In this paper, we focus on the Sombor (co)index of two-trees (a very important structure in complex
networks). The maximum and second maximum Sombor index, the minimum and second minimum
Sombor coindex of two-trees are determined, respectively. Besides, the two-trees with these extreme
Sombor (co)index are characterized.

However, the minimum Sombor index and the maximum Sombor coindex of two-trees are unknown.
By calculating the degree sequence of Xn and Ln, it is not difficult to find that there is a big difference
((n−1)−2) between their vertex degrees. Therefore, considering the other extreme cases, we guess that
the two-tree corresponding to the minimum Sombor index (or the maximum Sombor coindex) should
minimize the difference between dG(u) and dG(v) for any uv ∈ E(G) as much as possible. Combining
with Lemmas 2.2 and 2.3, we conjecture that these two extreme values will be contributed by the
two-tree H1

n (Figure 3) if n is even or H2
n (Figure 4) if n is odd.

n is even

vnv4

vn-1v3v2

v1

Figure 3. The two-tree H1
n .

vn

n is odd

vn-1v4

vn-2v3v2

v1

Figure 4. The two-tree H2
n .

Conjecture 3.1. Let G be a two-tree of order n. Then,

S O(G) ≥ 6
√

2n + 2
√

13 + 4
√

5 + 20 − 33
√

2,

S O(G) ≤ 2
√

2n2 + (10 − 26
√

2n + 4
√

5)n + 89
√

2 + 2
√

13 − 20
√

5 − 60,

with equality holds if and only if G � Hi
n (i = 1 if n is even, i = 2 if n is odd ).

It is not difficult to find that the extremal two-trees in this paper are the same as that in [12, 13,
22, 23, 25, 26], which raises a question naturally, whether the extremal two-trees for other unstudied
vertex-degree-based topological indices are the same as Xn, Ln. The work of this paper promotes the
study of this problem. At the same time, the proofs of the extremal two-trees are different for different
indices, it is a question worth studying to find a method to determine the extremal two-trees for any
indices.
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8. I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices,
MATCH Commun. Math. Comput. Chem., 74 (2015), 5–16.

9. I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH
Commun. Math. Comput. Chem., 86 (2021), 11–16.

10. W. Gao, W. F. Wang, M. R. Farahani, Topological indices study of molecular structure in anticancer
drugs, J. Chem., 2016 (2016), 1–8. https://doi.org/10.1155/2016/3216327

AIMS Mathematics Volume 8, Issue 8, 18982–18994.

http://dx.doi.org/https://doi.org/10.1016/j.dam.2010.05.017
http://dx.doi.org/https://doi.org/10.3390/e23080976
http://dx.doi.org/https://doi.org/10.2478/amns.2020.2.00020
http://dx.doi.org/https://doi.org/10.1093/rfs/hhm059
http://dx.doi.org/https://doi.org/10.1007/978-3-319-56850-8_2
http://dx.doi.org/https://doi.org/10.3390/math9111202
http://dx.doi.org/https://doi.org/10.1155/2016/3216327


18994

11. J. C. Hernández, J. M. Rodrı́guez, O. Rosario, J. M. Sigarreta, Extremal problems
on the general Sombor index of a graph, AIMS Math., 7 (2022), 8330–8343.
https://doi.org/10.3934/math.2022464

12. A. Jahanbani, H. Shooshtari, Y. L. Shang, Extremal trees for the Randić index, Acta Univ.
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