Research article Special Issues

Stability of delay Hopfield neural networks with generalized proportional Riemann-Liouville fractional derivative

  • Received: 04 July 2023 Revised: 19 July 2023 Accepted: 17 August 2023 Published: 20 September 2023
  • MSC : 34A08, 34A34, 34D20

  • The general delay Hopfield neural network is studied. It is considered the case of time-varying delay, continuously distributed delays, time varying coefficients and a special type of a Riemann-Liouville fractional derivative (GPRLFD) with an exponential kernel. The presence of delays and GPRLFD in the model require two special types of initial conditions. The applied GPRLFD also required a special definition of the equilibrium of the model. A constant equilibrium of the model is defined. We use Razumikhin method and Lyapunov functions to study stability properties of the equilibrium of the model. We apply Lyapunov functions defined by absolute values as well as quadratic Lyapunov functions. We prove some comparison results for Lyapunov function connected deeply with the applied GPRLFD and use them to obtain exponential bounds of the solutions. These bounds are satisfied for intervals excluding the initial time. Also, the convergence of any solution of the model to the equilibrium at infinity is proved. An example illustrating the importance of our theoretical results is also included.

    Citation: Ravi P. Agarwal, Snezhana Hristova. Stability of delay Hopfield neural networks with generalized proportional Riemann-Liouville fractional derivative[J]. AIMS Mathematics, 2023, 8(11): 26801-26820. doi: 10.3934/math.20231372

    Related Papers:

  • The general delay Hopfield neural network is studied. It is considered the case of time-varying delay, continuously distributed delays, time varying coefficients and a special type of a Riemann-Liouville fractional derivative (GPRLFD) with an exponential kernel. The presence of delays and GPRLFD in the model require two special types of initial conditions. The applied GPRLFD also required a special definition of the equilibrium of the model. A constant equilibrium of the model is defined. We use Razumikhin method and Lyapunov functions to study stability properties of the equilibrium of the model. We apply Lyapunov functions defined by absolute values as well as quadratic Lyapunov functions. We prove some comparison results for Lyapunov function connected deeply with the applied GPRLFD and use them to obtain exponential bounds of the solutions. These bounds are satisfied for intervals excluding the initial time. Also, the convergence of any solution of the model to the equilibrium at infinity is proved. An example illustrating the importance of our theoretical results is also included.



    加载中


    [1] S. Zhang, Y. Yu, H. Wang, Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Anal. Hybrid Syst., 16 (2015), 104–121. https://doi.org/10.1016/j.nahs.2014.10.001 doi: 10.1016/j.nahs.2014.10.001
    [2] A. Kutahyalıoglu, F. Karakoc, Exponential stability of Hopfield neural networks with conformable fractional derivative, Neurocomputing, 456 (2021), 263–267. https://doi.org/10.1016/j.neucom.2021.05.076 doi: 10.1016/j.neucom.2021.05.076
    [3] Y. Tian, Z. Wang, Stability analysis for delayed neural networks: A fractional-order function method, Neurocomputing, 464 (2021), 282–289. https://doi.org/10.1016/j.neucom.2021.08.077 doi: 10.1016/j.neucom.2021.08.077
    [4] H. Wang, Y. Yu, G. Wen, S. Zhang, Stability analysis of fractional-order neural networks with time delay, Neural Process. Lett., 42 (2015), 479–500. https://doi.org/10.1007/s11063-014-9368-3 doi: 10.1007/s11063-014-9368-3
    [5] H. Wang, Y. Yu, G. Wen, Stability analysis of fractional-order Hopfield neural networks with time delays, Neural Networks, 55 (2014), 98–109. https://doi.org/10.1016/j.neunet.2014.03.012 doi: 10.1016/j.neunet.2014.03.012
    [6] H. Zhang, R. Ye, J. Cao, A. Ahmed, X. Li, Y. Wan, Lyapunov functional approach to stability analysis of Riemann-Liouville fractional neural networks with time-varying delays, Asian J. Control, 20 (2018), 1938–1951. https://doi.org/10.1002/asjc.1675 doi: 10.1002/asjc.1675
    [7] Y. Zhang, J. Li, S. Zhu, H. Wang, Asymptotical stability and synchronization of Riemann-Liouville fractional delayed neural networks, Comput. Appl. Math., 42 (2023), 20. https://doi.org/10.1007/s40314-022-02122-8 doi: 10.1007/s40314-022-02122-8
    [8] S. Hristova, S. Tersian, R. Terzieva, Lipschitz stability in time for Riemann-Liouville fractional differential equations, Fractal Fract., 5 (2021), 37. https://doi.org/10.3390/fractalfract5020037 doi: 10.3390/fractalfract5020037
    [9] R. Agarwal, S. Hristova, D. O'Regan, Practical stability for Riemann-Liouville delay fractional differential equations, Arab. J. Math., 10 (2021), 271–283. https://doi.org/10.1007/s40065-021-00320-6 doi: 10.1007/s40065-021-00320-6
    [10] R. Agarwal, S. Hristova, D. O'Regan, P. Kopanov, Mean-square stability of Riemann-Liouville fractional Hopfield's graded response neural networks with random impulses, Adv. Differ. Equ., 2021 (2021), 98. https://doi.org/10.1186/s13662-021-03237-8 doi: 10.1186/s13662-021-03237-8
    [11] E. Viera-Martin, J. F. Gómez-Aguilar, J. E. Solís-Pérez, J. A. Hernández-Pérez, R. F. Escobar-Jiménez, Artificial neural networks: A practical review of applications involving fractional calculus, Eur. Phys. J. Spec. Top., 231 (2022), 2059–2095. https://doi.org/10.1140/epjs/s11734-022-00455-3 doi: 10.1140/epjs/s11734-022-00455-3
    [12] Y. Luchko, General fractional integrals and derivatives with the Sonine kernels, Mathematics, 9 (2021), 594. https://doi.org/10.3390/math9060594 doi: 10.3390/math9060594
    [13] Y. Luchko, Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense, Mathematics, 10 (2022), 849. https://doi.org/10.3390/math10060849 doi: 10.3390/math10060849
    [14] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
    [15] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 709–722. http://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [16] S. Hristova, M. I. Abbas, Explicit solutions of initial value problems for fractional generalized proportional differential equations with and without impulses, Symmetry, 13 (2021), 996. https://doi.org/10.3390/sym13060996 doi: 10.3390/sym13060996
    [17] M. I. Abbas, Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative, Miskolc Math. Notes, 22 (2021), 491–502. https://doi.org/10.18514/MMN.2021.3470 doi: 10.18514/MMN.2021.3470
    [18] R. Almeida, R. P. Agarwal, S. Hristova, D. O'Regan, Quadratic Lyapunov functions for stability of the generalized proportional fractional differential equations with applications to neural networks, Axioms, 10 (2021), 322. https://doi.org/10.3390/axioms10040322 doi: 10.3390/axioms10040322
    [19] M. Bohner, S. Hristova, Stability for generalized Caputo proportional fractional delay integro-differential equations, Bound. Value Probl., 2022 (2022), 14. https://doi.org/10.1186/s13661-022-01595-0 doi: 10.1186/s13661-022-01595-0
    [20] J. Alzabut, J. Viji, V. Muthulakshmi, W. Sudsutad, Oscillatory behavior of a type of generalized proportional fractional differential equations with forcing and damping terms, Mathematics, 8 (2020), 1037. https://doi.org/10.3390/math8061037 doi: 10.3390/math8061037
    [21] W. Sudsutad, J. Alzabut, C. Tearnbucha, C.Thaiprayoon, On the oscillation of differential equations in frame of generalized proportional fractional derivatives, AIMS Mathematics, 5 (2020), 856–871. https://doi.org/10.3934/math.2020058 doi: 10.3934/math.2020058
    [22] Sh. Das, Functional fractional calculus, Heidelberg: Springer, 2011.
    [23] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1998.
    [24] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives (theory and applications), Switzerland: Gordon and Breach, 1993.
    [25] F. Sabzikar, M. M. Meerschaert, J. Chen, Tempered fractional calculus, J. Comput. Phys., 293 (2015), 14–28. https://doi.org/10.1016/j.jcp.2014.04.024
    [26] R. P. Agarwal, S. Hristova, D. O'Regan, Mittag-Leffler type stability of BAM neural networks modeled by the generalized proportional Riemann-Liouville fractional derivative, Axioms, 12 (2023), 588. https://doi.org/10.20944/preprints202305.1659.v1 doi: 10.20944/preprints202305.1659.v1
    [27] J. V. Devi, F. A. M. Rae, Z. Drici, Variational Lyapunov method for fractional differential equations, Comput. Math. Appl., 64 (2012), 2982–2989. https://doi.org/10.1016/j.camwa.2012.01.070 doi: 10.1016/j.camwa.2012.01.070
    [28] X. Wu, S. Liu, Y. Wang, Stability analysis of Riemann-Liouville fractional-order neural networks with reaction-diffusion terms and mixed time-varying delays, Neurocomputing, 431 (2021), 169–178. https://doi.org/10.1016/j.neucom.2020.12.053 doi: 10.1016/j.neucom.2020.12.053
    [29] J. Alidousti, R. K. Ghaziani, A. B. Eshkaftaki, Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann-Liouville derivatives, Turk. J. Math., 41 (2017), 1260–1278. https://doi.org/10.3906/mat-1510-5 doi: 10.3906/mat-1510-5
    [30] Z. Qin, R. Wu, Y. Lu, Stability analysis of fractionalorder systems with the Riemann-Liouville derivative, Syst. Sci. Control Eng., 2 (2014), 727–731. https://doi.org/10.1080/21642583.2013.877857 doi: 10.1080/21642583.2013.877857
    [31] R. Agarwal, S. Hristova, D. O'Regan, Stability concepts of Riemann-Liouville fractional-order delay nonlinear systems, Mathematics, 9 (2021), 435. https://doi.org/10.3390/math9040435 doi: 10.3390/math9040435
    [32] L. Wang, Q. Zhou, H. Fu, Q. Zhang, Exponential stability of Hopfield neural networks of neutral type with multiple time-varying delays, AIMS Mathematics, 6 (2021), 8030–8043. https://doi.org/10.3934/math.2021466 doi: 10.3934/math.2021466
    [33] G. D. Zong, J. Liu, New Delay-dependent global asymptotic stability condition for Hopfield neural networks with time-varying delays, Int. J. Autom. Comput., 6 (2009), 415–419. https://doi.org/10.1007/s11633-009-0415-x doi: 10.1007/s11633-009-0415-x
    [34] X. Wu, S. Liu, Y. Wang, Stability analysis of Riemann-Liouville fractional-order neural networks with reaction-diffusion terms and mixed time-varying delays, Neurocomputing, 431 (2021), 169–178. https://doi.org/10.1016/j.neucom.2020.12.053 doi: 10.1016/j.neucom.2020.12.053
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(801) PDF downloads(58) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog