Research article Special Issues

Tensor Conjugate-Gradient methods for tensor linear discrete ill-posed problems

  • Received: 09 July 2023 Revised: 02 September 2023 Accepted: 05 September 2023 Published: 20 September 2023
  • MSC : 15A69, 65F05, 65J20

  • This paper presents three types of tensor Conjugate-Gradient (tCG) methods for solving large-scale linear discrete ill-posed problems based on the t-product between third-order tensors. An automatic determination strategy of a suitable regularization parameter is proposed for the tCG method in the Fourier domain (A-tCG-FFT). An improved version and a preconditioned version of the tCG method are also presented. The discrepancy principle is employed to determine a suitable regularization parameter. Several numerical examples in image and video restoration are given to show the effectiveness of the proposed tCG methods.

    Citation: Hong-Mei Song, Shi-Wei Wang, Guang-Xin Huang. Tensor Conjugate-Gradient methods for tensor linear discrete ill-posed problems[J]. AIMS Mathematics, 2023, 8(11): 26782-26800. doi: 10.3934/math.20231371

    Related Papers:

  • This paper presents three types of tensor Conjugate-Gradient (tCG) methods for solving large-scale linear discrete ill-posed problems based on the t-product between third-order tensors. An automatic determination strategy of a suitable regularization parameter is proposed for the tCG method in the Fourier domain (A-tCG-FFT). An improved version and a preconditioned version of the tCG method are also presented. The discrepancy principle is employed to determine a suitable regularization parameter. Several numerical examples in image and video restoration are given to show the effectiveness of the proposed tCG methods.



    加载中


    [1] M. E. Kilmer, C. D. Martin, Factorization strategies for third order tensors, Linear Algebra Appl., 435 (2011), 641–658. https://doi.org/10.1016/j.laa.2010.09.020 doi: 10.1016/j.laa.2010.09.020
    [2] N. Hao, M. E. Kilmer, K. Braman, R. C. Hoover, Facial recognition using tensor-tensor decompositions, SIAM J. Imaging Sci., 6 (2013), 437–463. https://doi.org/10.1137/110842570 doi: 10.1137/110842570
    [3] M. E. Guide, A. E. Ichi, K. Jbilou, R. Sadaka, On tensor GMRES and Golub-Kahan methods via the T-product for color image processing, Electron. J. Linear Algebra, 37 (2021), 524–543. https://doi.org/10.13001/ela.2021.5471 doi: 10.13001/ela.2021.5471
    [4] L. Reichel, U. O. Ugwu, The tensor Golub–Kahan–Tikhonov method applied to the solution of ill-posed problems with a t-product structure, Numer. Linear Algebra Appl., 29 (2021), e2412. https://doi.org/10.1002/nla.2412 doi: 10.1002/nla.2412
    [5] L. Reichel, U. O. Ugwu, Tensor Arnoldi–Tikhonov and GMRES-type methods for ill-posed problems with a t-product structure, J. Sci. Comput., 90 (2022), 59. https://doi.org/10.1007/s10915-021-01719-1 doi: 10.1007/s10915-021-01719-1
    [6] J. Zhang, A. K. Saibaba, M. E. Kilmer, S. Aeron, A randomized tensor singular value decomposition based on the t‐product, Numer. Linear Algebra Appl., 25 (2018), e2179. https://doi.org/10.1002/nla.2179 doi: 10.1002/nla.2179
    [7] U. Ugwu, L. Reichel, Tensor regularization by truncated iteration: A comparison of some solution methods for large-scale linear discrete ill-posed problem with a t-product, 2021, arXiv: 2110.02485. https://doi.org/10.48550/arXiv.2110.02485
    [8] K. Lund, The tensor t‐function: A definition for functions of third‐order tensors, Numer. Linear Algebra Appl., 27 (2020), e2288. https://doi.org/10.1002/nla.2288 doi: 10.1002/nla.2288
    [9] A. Ma, D. Molitor, Randomized Kaczmarz for tensor linear systems, Bit Numer. Math., 62 (2022), 171–194. https://doi.org/10.1007/s10543-021-00877-w doi: 10.1007/s10543-021-00877-w
    [10] M. E. Kilmer, K. Braman, N. Hao, R. C. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34 (2013), 148–172. https://doi.org/10.1137/110837711 doi: 10.1137/110837711
    [11] H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Springer, 2000.
    [12] S. Djennadi, N. Shawagfeh, O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Solition. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127
    [13] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. https://doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
    [14] G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins University Press, 1996.
    [15] J. Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 66 (1996), 571–584. https://doi.org/10.1016/0377-0427(95)00167-0 doi: 10.1016/0377-0427(95)00167-0
    [16] Å. Bjorck, T. Elfving, Z. Strakos, Stability of conjugate gradient and Lanczos methods for linear least squares problems, SIAM J. Matrix Anal. Appl., 19 (1998), 720–736. https://doi.org/10.1137/S089547989631202X doi: 10.1137/S089547989631202X
    [17] L. N. Trefethen, D. Bau, Numerical linear algebra, SIAM, 1997. https://doi.org/10.1137/1.9780898719574
    [18] P. C. Hansen, J. G. Nagy, D. P. O'Leary, Deblurring images: Matrices, spectra, and filtering, SLAM, 2006.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(853) PDF downloads(58) Cited by(2)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog