Research article Special Issues

Preconditioned augmented Lagrangian method for mean curvature image deblurring

  • Received: 20 April 2022 Revised: 07 July 2022 Accepted: 21 July 2022 Published: 05 August 2022
  • MSC : 68U10, 94A08, 65K10, 65N12

  • Image deblurring models with a mean curvature functional has been widely used to preserve edges and remove the staircase effect in the resulting images. However, the Euler-Lagrange equations of a mean curvature model can be used to solve fourth-order non-linear integro-differential equations. Furthermore, the discretization of fourth-order non-linear integro-differential equations produces an ill-conditioned system so that the numerical schemes like Krylov subspace methods (conjugate gradient etc.) have slow convergence. In this paper, we propose an augmented Lagrangian method for a mean curvature-based primal form of the image deblurring problem. A new circulant preconditioned matrix is introduced to overcome the problem of slow convergence when employing a conjugate gradient method inside of the augmented Lagrangian method. By using the proposed new preconditioner fast convergence has been observed in the numerical results. Moreover, a comparison with the existing numerical methods further reveal the effectiveness of the preconditioned augmented Lagrangian method.

    Citation: Shahbaz Ahmad, Faisal Fairag, Adel M. Al-Mahdi, Jamshaid ul Rahman. Preconditioned augmented Lagrangian method for mean curvature image deblurring[J]. AIMS Mathematics, 2022, 7(10): 17989-18009. doi: 10.3934/math.2022991

    Related Papers:

  • Image deblurring models with a mean curvature functional has been widely used to preserve edges and remove the staircase effect in the resulting images. However, the Euler-Lagrange equations of a mean curvature model can be used to solve fourth-order non-linear integro-differential equations. Furthermore, the discretization of fourth-order non-linear integro-differential equations produces an ill-conditioned system so that the numerical schemes like Krylov subspace methods (conjugate gradient etc.) have slow convergence. In this paper, we propose an augmented Lagrangian method for a mean curvature-based primal form of the image deblurring problem. A new circulant preconditioned matrix is introduced to overcome the problem of slow convergence when employing a conjugate gradient method inside of the augmented Lagrangian method. By using the proposed new preconditioner fast convergence has been observed in the numerical results. Moreover, a comparison with the existing numerical methods further reveal the effectiveness of the preconditioned augmented Lagrangian method.



    加载中


    [1] R. Acar, C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Probl., 10 (1994), 1217–1229. https://doi.org/10.1088/0266-5611/10/6/003 doi: 10.1088/0266-5611/10/6/003
    [2] S. Ahmad, A. M. Al-Mahdi, R. Ahmed, Two new preconditioners for mean curvature-based image deblurring problem, AIMS Math., 6 (2021), 13824–13844.
    [3] S. Ahmad, F. Fairag, Circulant preconditioners for mean curvature-based image deblurring problem, J. Algorithms Comput., 15 (2021).
    [4] M. Benzi, G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. A., 26 (2004), 20–41.
    [5] C. Brito-Loeza, K. Chen, V. Uc-Cetina, Image denoising using the gaussian curvature of the image surface, Numer. Meth. Part. D. E., 32 (2016), 1066–1089. https://doi.org/10.1002/num.22042 doi: 10.1002/num.22042
    [6] P. Campisi, K. Egiazarian, Blind image deconvolution: Theory and applications, CRC press, 2016.
    [7] R. H. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions, IMA J. Numer. Anal., 11 (1991), 333–345.
    [8] R. H. Chan, K. P. Ng, Toeplitz preconditioners for Hermitian Toeplitz systems, Linear Algebra Appl., 190 (1993), 181–208. https://doi.org/10.1016/0024-3795(93)90226-E doi: 10.1016/0024-3795(93)90226-E
    [9] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, T. Q. Nguyen, An augmented lagrangian method for total variation video restoration, IEEE T. Image Process., 20 (2011), 3097–3111. https://doi.org/10.1109/TIP.2011.2158229 doi: 10.1109/TIP.2011.2158229
    [10] T. F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Comput., 9 (1988), 766–771. https://doi.org/10.1137/0909051 doi: 10.1137/0909051
    [11] C. Chen, C. Ma, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 43 (2015), 49–55. https://doi.org/10.1016/j.aml.2014.12.001 doi: 10.1016/j.aml.2014.12.001
    [12] K. Chen, Introduction to variational image-processing models and applications, Int. J. Comput. Math., 90 (2013), 1–8.
    [13] K. Chen, F. Fairag, A. Al-Mahdi, Preconditioning techniques for an image deblurring problem, Numer. Linear Algebra, 23 (2016), 570–584. https://doi.org/10.1002/nla.2040 doi: 10.1002/nla.2040
    [14] N. R. Choi, A comparative study of non-blind and blind deconvolution of ultrasound images, Dissertations Theses Gradworks, University of Southern California, 2014.
    [15] F. Di Benedetto, Solution of Toeplitz normal equations by sine transform based preconditioning, Linear Algebra Appl., 285 (1998), 229–255. https://doi.org/10.1016/S0024-3795(98)10115-5 doi: 10.1016/S0024-3795(98)10115-5
    [16] F. Fairag, S. Ahmad, A two-level method for image deblurring problem, in 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), IEEE, 2019, 1–5.
    [17] F. Fairag, K. Chen, S. Ahmad, Analysis of the ccfd method for mc-based image denoising problems, Electron. T. Numer. Ana., 54 (2021), 108–127. https://doi.org/10.1553/etna_vol54s108 doi: 10.1553/etna_vol54s108
    [18] F. Fairag, K. Chen, C. Brito-Loeza, S. Ahmad, A two-level method for image denoising and image deblurring models using mean curvature regularization, Int. J. Comput. Math., 2021, 1–21.
    [19] X. Ge, J. Tan, L. Zhang, Y. Qian, Blind image deconvolution via salient edge selection and mean curvature regularization, Signal Process., 190 (2022), 108336.
    [20] X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpentieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020
    [21] L. Guo, X. L. Zhao, X. M. Gu, Y. L. Zhao, Y. B. Zheng, T. Z. Huang, Three-dimensional fractional total variation regularized tensor optimized model for image deblurring, Appl. Math. Comput., 404 (2021), 126224.
    [22] C. Li, W. Yin, H. Jiang, Y. Zhang, An efficient augmented lagrangian method with applications to total variation minimization, Comput. Optim. Appl., 56 (2013), 507–530. https://doi.org/10.1007/s10589-013-9576-1 doi: 10.1007/s10589-013-9576-1
    [23] L. Li, J. Pan, W. S. Lai, C. Gao, N. Sang, M. H. Yang, Learning a discriminative prior for blind image deblurring, IEEE conference on computer vision and pattern recognition, 2018, 6616–6625.
    [24] F. R. Lin, Preconditioners for block Toeplitz systems based on circulant preconditioners, Numer. Algorithms, 26 (2001), 365–379. https://doi.org/10.1023/A:1016674923507 doi: 10.1023/A:1016674923507
    [25] F. R. Lin, W. K. Ching, Inverse Toeplitz preconditioners for Hermitian Toeplitz systems, Numer. Linear Algebra, 12 (2005), 221–229. https://doi.org/10.1002/nla.397 doi: 10.1002/nla.397
    [26] F. R. Lin, C. X. Wang, Bttb preconditioners for Bttb systems, Numer. Algorithms, 60 (2012), 153–167. https://doi.org/10.1007/s11075-011-9516-z doi: 10.1007/s11075-011-9516-z
    [27] M. K. Ng, Iterative methods for Toeplitz systems, London, U.K.: Oxford University Press, 2004.
    [28] K. L. Riley, Two-level preconditioners for regularized ill-posed problems, PhD Thesis, Montana State University, 1999.
    [29] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268.
    [30] D. K. Salkuyeh, M. Masoudi, D. Hezari, On the generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 48 (2015), 55–61. https://doi.org/10.1007/s10986-015-9265-0 doi: 10.1007/s10986-015-9265-0
    [31] L. Sun, K. Chen, A new iterative algorithm for mean curvature-based variational image denoising, BIT Numer. Math., 54 (2014), 523–553.
    [32] X. C. Tai, J. Hahn, G. J. Chung, A fast algorithm for Euler's elastica model using augmented lagrangian method, SIAM J. Imaging Sci., 4 (2011), 313–344. https://doi.org/10.1137/100803730 doi: 10.1137/100803730
    [33] X. C. Tai, K. A. Lie, T. F. Chan, S. Osher, Image processing based on partial differential equations: Proceedings of the international conference on PDE-based image processing and related inverse problems, CMA, Oslo, August 8–12, 2005, Springer Science & Business Media, 2006.
    [34] S. Tao, W. Dong, H. Feng, Z. Xu, Q. Li, Non-blind image deconvolution using natural image gradient prior, Optik, 124 (2013), 6599–6605. https://doi.org/10.1016/j.ijleo.2013.05.068 doi: 10.1016/j.ijleo.2013.05.068
    [35] A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Math. Dokl., 4 (1963), 1624–1627.
    [36] C. R. Vogel, M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE T. Image Process., 7 (1998), 813–824. https://doi.org/10.1109/83.679423 doi: 10.1109/83.679423
    [37] C. Wu, X. C. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models, SIAM J. Imaging Sci., 3 (2010), 300–339. https://doi.org/10.1137/090767558 doi: 10.1137/090767558
    [38] N. Xiong, R. W. Liu, M. Liang, D. Wu, Z. Liu, H. Wu, Effective alternating direction optimization methods for sparsity-constrained blind image deblurring, Sensors, 17 (2017), 174. https://doi.org/10.3390/s17010174 doi: 10.3390/s17010174
    [39] F. Yang, K. Chen, B. Yu, D. Fang, A relaxed fixed point method for a mean curvature-based denoising model, Optim. Meth. Softw., 29 (2014), 274–285.
    [40] J. Zhang, C. Deng, Y. Shi, S. Wang, Y. Zhu, A fast linearised augmented lagrangian method for a mean curvature based model, E. Asian J. Appl. Math., 8 (2018), 463–476.
    [41] W. Zhu, T. Chan, Image denoising using mean curvature of image surface, SIAM J. Imaging Sci., 5 (2012), 1–32.
    [42] W. Zhu, X. C. Tai, T. Chan, Augmented lagrangian method for a mean curvature based image denoising model, Inverse Probl. Imag., 7 (2013), 1409–1432.
    [43] W. Zhu, X. C. Tai, T. Chan, A fast algorithm for a mean curvature based image denoising model using augmented lagrangian method, in Efficient Algorithms for Global Optimization Methods in Computer Vision, Springer, 2014,104–118.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1459) PDF downloads(94) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog