
In this paper, we deal with a Lévy noise-driven epidemic model reflecting the dynamics of measles infection subject to the effect of vaccination. After model formulation, the feasibility of the system was studied by using the underlying existence and uniqueness theory. Moreover, we discussed the behavior of solution around the infection-free and disease-present steady states. To check the persistence and extinction of the infection, we calculated the threshold parameter Rs and it was determined that the disease vanishes whenever Rs<1. From January to October 2019, the reported measles cases in Pakistan wear used and the model was fitted against this data by using the well-known fitting techniques. The values of the parameter were estimated and future behavior of the infection was predicted by simulating the model. The model was further simulated and theoretical findings of the study were validated.
Citation: Asad Khan, Anwarud Din. Stochastic analysis for measles transmission with Lévy noise: a case study[J]. AIMS Mathematics, 2023, 8(8): 18696-18716. doi: 10.3934/math.2023952
[1] | Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116 |
[2] | Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406 |
[3] | Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767 |
[4] | Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225 |
[5] | Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820 |
[6] | Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280 |
[7] | Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041 |
[8] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[9] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[10] | Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489 |
In this paper, we deal with a Lévy noise-driven epidemic model reflecting the dynamics of measles infection subject to the effect of vaccination. After model formulation, the feasibility of the system was studied by using the underlying existence and uniqueness theory. Moreover, we discussed the behavior of solution around the infection-free and disease-present steady states. To check the persistence and extinction of the infection, we calculated the threshold parameter Rs and it was determined that the disease vanishes whenever Rs<1. From January to October 2019, the reported measles cases in Pakistan wear used and the model was fitted against this data by using the well-known fitting techniques. The values of the parameter were estimated and future behavior of the infection was predicted by simulating the model. The model was further simulated and theoretical findings of the study were validated.
Chemical kinetics deals with chemistry experiments and interprets them in terms of a mathematical model. The experiments are done on chemical reactions with the passage of time. The models are differential equations for the rates at which reactants are consumed and products are produced. Chemists are able to understand how chemical reactions take place at the molecular level by combining models with investigation. Molecules react in steps to lead to the overall stoichiometric reaction which is reaction mechanism for collection of reactions. The set of reactions specifies the path (or paths) that reactant molecules take to finally arrive at the product molecules. All species in the reaction appear in at least one step and the sum of the steps gives the overall reaction. The govern the rate of the reaction which leads directly to the mechanism of differential equations [1]. Many processes and phenomena in chemistry generally in sciences can be designated by first-order differential equations. These equations are the most important and most frequently used to describe natural laws. The following examples are discussed: the Bouguer-Lambert-Beer law in spectroscopy, time constants of sensors, chemical reaction kinetics, radioactive decay, relaxation in nuclear magnetic resonance, and the RC constant of an electrode [2]. The induced kinetic differential equations of a reaction network endowed with mass action type kinetics are a system of polynomial differential equations [3]. We review the basic ideas of fractional differential equations and their applications on non-linear biochemical reaction models. We apply this idea to a non-linear model of enzyme inhibitor reactions [4].
The fractional-order, which involves integration and transect differentiation using fractional calculus is helping to better understand the explanation of real-world problems than ordinary integer order, as well as in the modeling of real phenomena due to a characterization of memory and hereditary properties in [5,6]. Riemann Liouville developed the concept of fractional derivative, which is based on power law, [7,8] offers a novel fractional derivative that makes use of the exponential kernel. Several issues include the non-singular kernel fractional derivative, which covers the trigonometric and exponential functions, and [9,10,11,12] illustrates some relevant techniques for epidemic models. This virus's suggested outbreak efficiently catches the timeline for the COVID-19 disease conceptual model [13]. In the literature, many fractional operators are employed to solve real-world issues [14,15].
In this paper, section 1 is introduction and section 2 consists of some basic fractional order derivative which are helpful to solve the epidemiological model. Section 3 and 4 consists of generalized from of the model, uniqueness and stability of the model. Fractal Fractional techniques with exponential decay kernel and Mittag-Leffler kernel respectively in section 5. Results and conclusion are discussed in section 6, and 7 respectively.
Following are the basic definitions [7,8,14,15] used for analysis and solution of the problem.
Definition 1: Sumudu transform for any function ϕ(t) over a set is given as,
A={ϕ(t):there exist Λ,τ1,τ2>0,|ϕ(t)|<Λexp(|t|τi),if t∈(−1)j×[0,∞)} |
is defined by
F(u)=ST[ϕ(t)]=∞∫0exp(−t)ϕ(ut)dt, u∈(−τ1,τ2). |
Definition 2: For a function g(t)∈W12(0,1),b>a and σ∈(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by
ABC0Dσtg(t)=AB(σ)1−σt∫0ddτg(τ)Mσ[−σ1−σ(t−τ)σ]dτ, n−1<σ<n |
where
AB(σ)=1−σ+σΓ(σ). |
By using Sumudu transform (ST) for (1), we obtain
ST[ABC0Dσtg(t)](s)=q(σ)1−σ{σΓ(σ+1)Mσ(−11−σVσ)}×[ST(g(t))−g(0)]. |
Definition 3: For a function g(t)∈W12(0,1),b>a and α1∈(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by
ABC0Dα1tg(t)=AB(α1)1−α1t∫0ddτg(τ)Eα1[−α11−α1(t−τ)α1]dτ, |
where
AB(α1)=1−α1+α1Γ(α1). |
Definition 4: Suppose that g(t) is continuous on an open interval (a,b), then the fractal-fractional integral of g(t) of order α1 having Mittag-Leffler type kernel and given by
FFMJα1,α20,t(g(t))=α1α2AB(α1)Γ(α1)t∫0sα2−1g(s)(t−s)α1ds+α2(1−α1)tα2−1g(t)AB(α1) |
Robertson introduces this chemical process in [19,20]. Schafer pioneered the following chemical reactions method in 1975 [19,20]. It represents the high irradiance response (HIRES) of photomorphogenesis based on phytochrome. A stiff system of eight non-linear ordinary differential equations is used to create the following mathematical model.
y1′=−M1y1+M2y2+M3y3+M4,y2′=M1y1−M5y2,y3′=−M6y3+M2y4+M7y5,y4′=M3y2+M8y3−M9y4,y5′=−M10y5+M2y6+M2y7,y6′=−M11y6y8+M12y4+M8y5−M2y6+M12y7,y7′=M11y6y8−M13y7,y8′=−M11y6y8+M13y7. | (1) |
Here M1=1.7,M2=0.43,M3=8.32, M4=0.0007,M5=8.75, M6=10.03,M7=0.035, M8=1.71,M9=1.12,M10=1.745, M11=280,M12=0.69,M13=1.81. The initial values can be represented by y=(1,0,0,0,0,0,0,0.0057)T. By using Atangana-Baleanu in Caputo sense for system (1), we get
ABC0Dαty1=−M1y1+M2y2+M3y3+M4,ABC0Dαty2=M1y1−M5y2,ABC0Dαty3=−M6y3+M2y4+M7y5,ABC0Dαty4=M3y2+M8y3−M9y4,ABC0Dαty5=−M10y5+M2y6−M2y7,ABC0Dαty6=−M11y6y8+M12y4+M8y5−M2y6+M12y7,ABC0Dαty7=M11y6y8−M13y7,ABC0Dαty8=−M11y6y8+M13y7. | (2) |
Here OABCDαt is the Atanagana-Baleanue Caputo sense fractional derivative with 0<α≤1.
With given initial conditions
yi(0)≥0,i=1,2,3,…,8 | (3) |
Theorem 3.1: The solution of the proposed fractional-order model (1) along initial conditions is unique and bounded in R+8.
Proof: In (1), we can get its existence and uniqueness on the time interval (0, ∞). Afterwards, we need to show that the non-negative region R+8 is a positively invariant region. For this
ABC0Dαty1|y1=0=M2y2+M3y3+M4≥0, |
ABC0Dαty1|y2=0=M1y1≥0, |
ABC0Dαty1|y3=0=M2y4+M7y5≥0, |
ABC0Dαty1|y4=0=M3y2+M8y3≥0, |
ABC0Dαty1|y5=0=M2y6−M2y7≥0, |
ABC0Dαty1|y6=0=M12y4+M8y5+M12y7≥0, |
ABC0Dαty1|y7=0=M11y6y8≥0, |
ABC0Dαty1|y8=0=M13y7≥0 |
If (y1(0)), (y2(0)), (y3(0)), (y4(0)), (y5(0)), (y6(0)), (y7(0)), (y8(0)) ϵ R8+, then from above expression, the solution cannot escape from the hyperplane. Also on each hyperplane bounding the non-negative orthant, the vector field points into R8+, i.e., the domain R8+ is a positively invariant set.
Now, with the help of Sumudu transform definition, we get
QEα(−11−αPα)ST{y1(t)−y1(0)}=ST[−M1y1+M2y2+M3y3+M4],QEα(−11−αPα)ST{y2(t)−y2(0)}=ST[M1y1−M5y2],QEα(−11−αPα)ST{y3(t)−y3(0)}=ST[−M6y3+M2y4+M7y5],QEα(−11−αPα)ST{y4(t)−y4(0)}=ST[M3y2+M8y3−M9y4],QEα(−11−αPα)ST{y5(t)−y5(0)}=ST[−M10y5+M2y6−M2y7],QEα(−11−αPα)ST{y6(t)−y6(0)}=ST[−M11y6y8+M12y4+M8y5−M2y6+M12y7],QEα(−11−αPα)ST{y7(t)−y7(0)}=ST[M11y6y8−M13y7],QEα(−11−αPα)ST{y8(t)−y8(0)}=ST[−M11y6y8+M13y7]. | (4) |
Where Q=M(α)αΓ(α+1)1−α
Rearranging, we get
ST(y1(t))=y1(0)+H×ST[−M1y1+M2y2+M3y3+M4],ST(y2(t))=y2(0)+H×ST[M1y1−M5y2],ST(y3(t))=y3(0)+H×ST[−M6y3+M2y4+M7y5],ST(y4(t))=y4(0)+H×ST[M3y2+M8y3−M9y4],ST(y5(t))=y5(0)+H×ST[−M10y5+M2y6−M2y7],ST(y6(t))=y6(0)+H×ST[−M11y6y8+M12y4+M8y5−M2y6+M12y7],ST(y7(t))=y7(0)+H×ST[M11y6y8−M13y7],ST(y8(t))=y8(0)+H×ST[−M11y6y8+M13y7]. | (5) |
Using the inverse Sumudu transform on both sides of the system (5), we obtain
y1(t)=y1(0)+ST−1[H×ST[−M1y1+M2y2+M3y3+M4]],y2(t)=y2(0)+ST−1[H×ST[M1y1−M5y2]],y3(t)=y3(0)+ST−1[H×ST[−M6y3+M2y4+M7y5]],y4(t)=y4(0)+ST−1[H×ST[M3y2+M8y3−M9y4]],y5(t)=y5(0)+ST−1[H×ST[−M10y5+M2y6−M2y7]],y6(t)=y6(0)+ST−1[H×ST[−M11y6y8+M12y4+M8y5−M2y6+M12y7]],y7(t)=y7(0)+ST−1[H×ST[M11y6y8−M13y7]],y8(t)=y8(0)+ST−1[H×ST[−M11y6y8+M13y7]]. | (6) |
We next obtain the following recursive formula.
y1(n+1)(t)=y1(n)(0)+ST−1[H×ST{−M1y1(n)+M2y2(n)+M3y3(n)+M4}],y2(n+1)(t)=y2(n)(0)+ST−1[H×ST{M1y1(n)−M5y2(n)}],y3(n+1)(t)=y3(n)(0)+ST−1[H×ST{−M6y3(n)+M2y4(n)+M7y5(n)}],y4(n+1)(t)=y4(n)(0)+ST−1[H×ST{M3y2(n)+M8y3(n)−M9y4(n)}],y5(n+1)(t)=y5(n)(0)+ST−1[H×ST{−M10y5(n)+M2y6(n)−M2y7(n)}],y6(n+1)(t)=y6(n)(0)+ST−1[H×ST{−M11y6(n)y8(n)+M12y4(n)+M8y5(n)−M2y6(n)+M12y7(n)}],y7(n+1)(t)=y7(n)(0)+ST−1[H×ST{M11y6(n)y8(n)−M13y7(n)}],y8(n+1)(t)=y8(n)(0)+ST−1[H×ST{−M11y6(n)y8(n)+M13y7(n)}]. | (7) |
Where H=1−αM(α)αΓ(α+1)Eα(−11−αPα)
And the solution of system is provided by
y1(t)=limn→∞y1(n)(t), y2(t)=limn→∞y2(n)(t), y3(t)=limn→∞y3(n)(t), |
y4(t)=limn→∞y4(n)(t), y5(t)=limn→∞y5(n)(t), y6(t)=limn→∞y6(n)(t), |
y7(t)=limn→∞y7(n)(t), y8(t)=limn→∞y8(n)(t). |
Theorem 4.1: Define K be a self-map is given by
K[y1(n+1)(t)]=y1(n+1)(t)=y1(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M1y1(n)+M2y2(n)+M3y3(n)+M4}],K[y2(n+1)(t)]=y2(n+1)(t)=y2(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M1y1(n)−M5y2(n)}],K[y3(n+1)(t)]=y3(n+1)(t)=y3(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M6y3(n)+M2y4(n)+M7y5(n)}],K[y4(n+1)(t)]=y4(n+1)(t)=y4(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M3y2(n)+M8y3(n)−M9y4(n)}],K[y5(n+1)(t)]=y5(n+1)(t)=y5(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M10y5(n)+M2y6(n)−M2y7(n)}],K[y6(n+1)(t)]=y6(n+1)(t)=y6(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11y6(n)y8(n)+M12y4(n)+M8y5(n)−M2y6(n)+M12y7(n)}],K[y7(n+1)(t)]=y7(n+1)(t)=y7(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M11y6(n)y8(n)−M13y7(n)}],K[y8(n+1)(t)]=y8(n+1)(t)=y8(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11y6(n)y8(n)+M13y7(n)}]. | (8) |
Proof: By using triangular inequality with the definition of norms, we get
||K[y1(n)(t)]−K[y1(m)(t)]||≤||y1(n)(t)−y1(m)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M1||y1(n)−y1(m)||+M2||y2(n)−y2(m)||+M3||y3(n)−y3(m)||+M4}],||K[y2(n)(t)]−K[y2(m)(t)]||≤||y2(n)(t)−y2(m)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M1||y1(n)−y1(m)||−M5||y2(n)−y2(m)||}],||K[y3(n)(t)]−K[y3(m)(t)]||≤||y3(n)(t)−y3(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M6||y3(n)−y3(m)||+M2||y4(n)−y4(m)||+M7||y5(n)−y5(m)||}],||K[y4(n)(t)]−K[y4(m)(t)]||≤||y4(n)(t)−y4(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M3||y2(n)−y2(m)||+M8||y3(n)−y3(m)||−M9||y4(n)−y4(m)||}],||K[y5(n)(t)]−K[y5(m)(t)]||≤||y5(n)(t)−y5(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M10||y5(n)−y5(m)||+M2||y6(n)−y6(m)||−M2||y7(n)−y7(m)||}],||K[y6(n)(t)]−K[y6(m)(t)]||≤||y6(n)(t)−y6(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11||y6(n)y8(n)−y6(m)y8(m)||+M12||y4(n)−y4(m)||+M8||y5(n)−y5(m)||−M2||y6(n)−y6(m)||+M12||y7(n)−y7(m)||}],||K[y7(n)(t)]−K[y7(m)(t)]||≤||y7(n)(t)−y7(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M11||y6(n)y8(n)−y6(m)y8(m)||−M13||y7(n)−y7(m)||}],||K[y8(n)(t)]−K[y8(m)(t)]||≤||y8(n)(t)−y8(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11||y6(n)y8(n)−y6(m)y8(m)||+M13||y7(n)−y7(m)||}]. |
Hence satisfied given conditions.
θ=(0,0,0,0,0,0,0,0),θ={||y1(n)(t)−y1(m)(t)||×||−(y1(n)(t)+y1(m)(t))||−M1||y1(n)−y1(m)||+M2||y2(n)−y2(m)||+M3||y3(n)−y3(m)||+M4||y2(n)(t)−y2(m)(t)||×||−(y2(n)(t)+y2(m)(t))||+M1||y1(n)−y1(m)||−M5||y2(n)−y2(m)||||y3(n)(t)−y3(m)(t)||×||−(y3(n)(t)+y3(m)(t))||−M6||y3(n)−y3(m)||+M2||y4(n)−y4(m)||+M7||y5(n)−y5(m)||||y4(n)(t)−y4(m)(t)||×||−(y4(n)(t)+y4(m)(t))||+M3||y2(n)−y2(m)||+M8||y3(n)−y3(m)||−M9||y4(n)−y4(m)||||y5(n)(t)−y5(m)(t)||×||−(y5(n)(t)+y5(m)(t))||−M10||y5(n)−y5(m)||+M2||y6(n)−y6(m)||−M2||y7(n)−y7(m)||||y6(n)(t)−y6(m)(t)||×||−(y6(n)(t)+y6(m)(t))||−M11||y6(n)y8(n)−y6(m)y8(m)||+M12||y4(n)−y4(m)||+M8||y5(n)−y5(m)||−M2||y6(n)−y6(m)||+M12||y7(n)−y7(m)||||y7(n)(t)−y7(m)(t)||×||−(y7(n)(t)+y7(m)(t))||+M11||y6(n)y8(n)−y6(m)y8(m)||−M13||y7(n)−y7(m)||||y8(n)(t)−y8(m)(t)||×||−(y8(n)(t)+y8(m)(t))||−M11||y6(n)y8(n)−y6(m)y8(m)||+M13||y7(n)−y7(m)|| |
Hence the system is stable.
Theorem 4.2: Unique singular solution with the iterative method for the special solution of system (2).
Proof: Considering the Hilbert space H=L2((p,q)×(0,T)) which can be defined as
h:(p,q)×(0,T)→R,∬ghdgdh<∞. |
For this purpose, we consider the following operator
θ(0,0,0,0,0,0,0,0),θ={−M1y1+M2y2+M3y3+M4,M1y1−M5y2,−M6y3+M2y4+M7y5,M3y2+M8y3−M9y4,−M10y5+M2y6−M2y7,−M11y6y8+M12y4+M8y5−M2y6+M12y7,M11y6y8−M13y7,−M11y6y8+M13y7. |
By using inner product, we get
T((y1(11)−y1(12),y2(21)−y2(22),y3(31)−y3(32),y4(41)−y4(42),y5(51)−y5(52),y6(61)− y6(62),y7(71)−y7(72),y8(81)−y8(82)),(V1,V2,V3,V4,V5,V6,V7,V8)). |
Where
(y1(11)−y1(12),y2(21)−y2(22),y3(31)−y3(32), y4(41)−y4(42),y5(51)−y5(52), y6(61)−y6(62), y7(71)−y7(72), y8(81)−y8(82)), are the special solutions of the system. Taking into account the inner function and the norm, we have
{−M1(y1(11)−y1(12))+M2(y2(21)−y2(22))+M3(y3(31)−y3(32))+M4,V1}≤M1||y1(11)−y1(12)||||V1||+M2||y2(21)−y2(22)||||V1||+M3||y3(31)−y3(32)||||V1||+M4||V1||,{M1(y1(11)−y1(12))−M5(y2(21)−y2(22)),V2}≤M1||y1(11)−y1(12)||||V2||+M5||y2(21)−y2(22)||||V2||,{−M6(y3(31)−y3(32))+M2(y4(41)−y4(42))+M7(y5(51)−y5(52)),V3}≤M6||(y3(31)−y3(32))||||V3||+M2||(y4(41)−y4(42))||||V3||+M7||(y5(51)−y5(52))||||V3||,{M3(y2(21)−y2(22))+M8(y3(31)−y3(32))−M9(y4(41)−y4(42)),V4}≤M3||(y2(21)−y2(22))||||V4||+M8||(y3(31)−y3(32))||||V4||+M9||(y4(41)−y4(42))||||V4||,{−M10(y5(51)−y5(52))+M2(y6(61)−y6(62))−M2(y7(71)−y7(72)),V5}≤M10||(y5(51)−y5(52))||||V5||+M2||(y6(61)−y6(62))||||V5||+M2||(y7(71)−y7(72))||||V5||,{−M11(y6(61)−y6(62))(y8(81)−y8(82))+M12(y4(41)−y4(42))+M8(y5(51)−y5(52))−M2(y6(61)−y6(62))+M12(y7(71)−y7(72)),V6}≤M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||||V6||+M12||(y4(41)−y4(42))||||V6||+M8||(y5(51)−y5(52))||||V6||+M2||(y6(61)−y6(62))||||V6||+M12||(y7(71)−y7(72))||||V6||,{M11(y6(61)−y6(62))(y8(81)−y8(82))−M13(y7(71)−y7(72)),V7}≤M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||||V7||+M13||(y7(71)−y7(72))||||V7||,{−M11(y6(61)−y6(62))(y8(81)−y8(82))+M13(y7(71)−y7(72)),V8}≤M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||||V8||+M13||(y7(71)−y7(72))||||V8||. |
In the case for large number e1,e2,e3,e4,e5,e6,e7ande8, both solutions happen to be converged to the exact solution. Employing the topology concept, we can obtain eight positive very small parameters (χe1,χe2,χe3,χe4,χe5,χe6,χe7andχe8).
||y1−y1(11)||,||y1−y1(12)||≤χe1ϖ,||y2−y2(21)||,||y2−y2(22)||≤χe2ς, |
||y3−y3(31)||,||y3−y3(32)||≤χe3υ,||y4−y4(41)||,||y4−y4(42)||≤χe4κ, |
||y5−y5(51)||,||y5−y5(52)||≤χe5ϱ,||y6−y6(61)||,||y6−y6(62)||≤χe6ζ, |
||y7−y7(71)||,||y7−y7(72)||≤χe7ν,||y8−y8(81)||,||y8−y8(82)||≤χe8ε. |
Where
ϖ=8(M1||y1(11)−y1(12)||+M2||y2(21)−y2(22)||+M3||y3(31)−y3(32)||+M4)||V1|| |
ς=8(M1||y1(11)−y1(12)||+M5||y2(21)−y2(22)||)||V2|| |
υ=8(M6||(y3(31)−y3(32))||+M2||(y4(41)−y4(42))||+M7||(y5(51)−y5(52))||)||V3|| |
κ=8(M3||(y2(21)−y2(22))||+M8||(y3(31)−y3(32))||+M9||(y4(41)−y4(42))||)||V4|| |
ϱ=8(M10||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M2||(y7(71)−y7(72))||)||V5|| |
ζ=8(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M12||(y4(41)−y4(42))||+M8||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M12||(y7(71)−y7(72))||)||V6|| |
ν=8(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)||V7|| |
ε=8(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)||V8|| |
But, it is obvious that
(M1||y1(11)−y1(12)||+M2||y2(21)−y2(22)||+M3||y3(31)−y3(32)||+M4)≠0 |
(M1||y1(11)−y1(12)||+M5||y2(21)−y2(22)||)≠0 |
(M6||(y3(31)−y3(32))||+M2||(y4(41)−y4(42))||+M7||(y5(51)−y5(52))||)≠0 |
(M3||(y2(21)−y2(22))||+M8||(y3(31)−y3(32))||+M9||(y4(41)−y4(42))||)≠0 |
(M10||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M2||(y7(71)−y7(72))||)≠0 |
(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M12||(y4(41)−y4(42))||+M8||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M12||(y7(71)−y7(72))||)≠0 |
(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)≠0 |
(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)≠0 |
where ||V1||,||V2||,||V3||,||V4||,||V5||,||V6||,||V7||,||V8||≠0.
Therefore, we have
||y1(11)−y1(12)||=0,||y2(21)−y2(22)||=0,||y3(31)−y3(32)||=0, |
||(y4(41)−y4(42))||=0,||(y5(51)−y5(52))||=0,||(y6(61)−y6(62))||=0, |
||(y7(71)−y7(72))||=0,||(y8(81)−y8(82))||=0. |
Which yields that
y1(11)=y1(12),y2(21)=y2(22),y3(31)=y3(32),y4(41)=y4(42),y5(51)=y5(52),y6(61)=y6(62),y7(71)=y7(72),y8(81)=y8(82) |
This completes the proof of uniqueness.
An operator B:Z→Z can be defined as:
B(φ)(t)=φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)∫t0λμ−1(1−λ)μ−1£(t,φ(t))dλ | (10) |
If £(t,φ(t)) satisfies the Lipschitz condition and the following extension then
● For every φ∈Z there exists constants L£>0 and M£ such that
|£(t,φ(t))|≤L£|φ(t)|+M£ | (11) |
● For every φ,¯φ∈Z, there exists a constant M£>0 such that
|£(t,φ(t))−£(t,¯φ(t))||≤M£|φ(t)−¯φ(t)| | (12) |
Theorem 4.2: If the condition of (11) holds then for the function £:[0,T]×Z→R there exists at least one solution for the (1).
Proof: Since £ in (10) is continuous function, so B is also a continuous. Assume M={φ∈||φ||≤R,R>0}, then for φ∈Z, we have
B(φ)(t)=maxt∈[0,T]|φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(t,φ(t))dλ |
≤|φ(0)+μTμ−1(1−α1)AB(α1)(L£||φ(t)||+M£)+maxt∈[0,T]μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(t,φ(t))dλ| |
≤φ(0)+μTμ−1(1−α1)AB(α1)(L£||φ(t)||+M£)+μα1AB(α1)Γ(α1)(L£||φ(t)||+M£)Tμ+α1−1M(μ,α1)≤R. |
Hence, B is uniformly bounded, and M(μ,α1) is a beta function. For equicontinuity of B, we take t1<t2≤T, then consider
B(φ)(t2)−B(φ)(t1)=|μt2μ−1(1−α1)AB(α1)£(t2,φ(t2))+μα1AB(α1)Γ(α1) |
t2∫0λμ−1(t2−λ)μ−1£(t,φ(t))dλ−μt1μ−1(1−α1)AB(α1)£(t1,φ(t1)) +μα1AB(α1)Γ(α1)t2∫0λμ−1(t1−λ)μ−1£(t,φ(t))dλ| |
≤μt2μ−1(1−α1)AB(α1)(L£|φ(t)|+M£)+μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t2μ+α1−1M(μ,α1) |
μt1μ−1(1−α1)AB(α1)(L£|φ(t)|+M£)−μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t1μ+α1−1M(μ,α1) |
If t1→t2 then ||B(φ)(t2)−B(φ)(t1)→0|| Consequently ||B(φ)(t2)−B(φ)(t1)→0||,ast1→t2. Hence B is equicontinous. Thus, by Arzela-Ascoli theorem B is completely continuous. Consequently, by the result of Schauder's fixed point, it has at least one solution.
Theorem 4.3: If η=μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1M(μ,α1)M£<1 and the condition (12) holds, then η has a unique solution.
Proof: For φ,¯φ∈Z, we have
|B(φ)−B(¯φ)|=maxt∈[0,T]|μtμ−1(1−α1)AB(α1)[£(t,φ(t))|−£(t,¯φ(t))] |
+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1[£(t,φ(t))|−£(t,¯φ(t))]dλ| |
≤[μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1M(μ,α1)]||B(φ)−B(¯φ)|| |
≤η||B(φ)−B(¯φ)||. |
Hence, B is a contraction. So, by the principle of Banach contraction, it has a unique solution.
Ulam-Hyres stability
The proposed model is Ulam-Hyres stable if there exists Bμ,α1≥0 such that for every ε>0 and for every φ∈(L[0,T],R) satisfies the following inequality FFMJμ,α10,t(φ(t))−£(t,φ(t))≤ε,t∈[0,T] such that |φ(t)−£(t)|≤Bμ,α1ε,t∈[0,T].
Suppose a perturbation ω∈L[0,T],R then ω(0)=0 and
● For every ε>0∃ω(t)≤ε|
● 0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t).
Lemma 4.4: The solution of the perturbed model 0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t),φ(0)=φ0 fulfills the relation
B(t)−[φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(λ,φ(λ))dλ ≤α1∗α1,με |
Where α1∗α1,με=μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1M(μ,α1).
Lemma 4.5: By using condition (12) with lemma (4.4), proposed model is Ulam-Hyres stable if η<1.
Proof: Suppose α1∈Z be a solution and φ∈Z be any solution of (1), then
|φ(t)−α1(t)|=|φ(t)−[α1(0)+μtμ−1(1−α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)∫t0λμ−1(1−λ)μ−1£(λ,α1(λ))dλ]| |
≤|φ(t)−[φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(λ,φ(λ))dλ]| +|φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t)) +μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(λ,φ(λ))dλ| |
−|α1(0)+μtμ−1(1−α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)∫t0λμ−1(1−λ)μ−1£(λ,α1(λ))dλ| |
≤α1∗α1,με+(μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1)L£|φ(t)−α1(t)| |
≤α1∗α1,με+η|φ(t)−α1(t)|. |
Consequently,
||φ−α1||≤α1∗α1,με+η||φ(t)−α1(t)||. |
So, we can write it as
||φ−α1||≤Bα1,με, |
Where Bα1,με=α1∗α1,μ1−η. Hence the solution is Ulam-Hyres stable.
In this section, we present the Hires problem model (1) using fractal-fractional Atangana-Baleanu derivative. We have
FFDα1,α20,ty1=−M1y1+M2y2+M3y3+M4,FFDα1,α20,ty2=M1y1−M5y2,FFDα1,α20,ty3=−M6y3+M2y4+M7y5,FFDα1,α20,ty4=M3y2+M8y3−M9y4,FFDα1,α20,ty5=−M10y5+M2y6−M2y7,FFDα1,α20,ty6=−M11y6y8+M12y4+M8y5−M2y6+M12y7,FFDα1,α20,ty7=M11y6y8−M13y7,FFDα1,α20,ty8=−M11y6y8+M13y7. | (13) |
With initial conditions
y1(0)=y1(0),y2(0)=y2(0),y3(0)=y3(0),y4(0)=y4(0),y5(0)=y5(0),y6(0)=y6(0),y7(0)=y7(0),y8(0)=y8(0). |
We present the numerical algorithm for the fractal-fractional Hires problem model (13). The following is obtained by integrating the system (13).
y1(t)−y1(0)=(1−α1)C(α1)α2tα2−1{−M1y1(t)+M2y2(t)+M3y3(t)+M4}+α1α2C(α1)Γ(α1)∫t0τα2−1{−M1y1(τ)+M2y2(τ)+M3y3(τ)+M4}(t−τ)α1−1dτ,y2(t)−y2(0)=(1−α1)C(α1)α2tα2−1{M1y1(t)−M5y2(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{{M1y1(τ)−M5y2(τ)}}(t−τ)α1−1dτ,y3(t)−y3(0)=(1−α1)C(α1)α2tα2−1{−M6y3(t)+M2y4(t)+M7y5(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{−M6y3(τ)+M2y4(τ)+M7y5(τ)}(t−τ)α1−1dτ,y4(t)−y4(0)=(1−α1)C(α1)α2tα2−1{M3y2(t)+M8y3(t)−M9y4(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{M3y2(τ)+M8y3(τ)−M9y4(τ)}(t−τ)α1−1dτ,y5(t)−y5(0)=(1−α1)C(α1)α2tα2−1{−M10y5(t)+M2y6(t)−M2y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{{−M10y5(τ)+M2y6(τ)−M2y7(τ)}}(t−τ)α1−1dτ,y6(t)−y6(0)=(1−α1)C(α1)α2tα2−1{−M11y6(t)y8(t)+M12y4(t)+M8y5(t)−M2y6(t)+M12y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{−M11y6(τ)y8(τ)+M12y4(τ)+M8y5(τ)−M2y6(τ)+M12y7(τ)}(t−τ)α1−1dτ,y7(t)−y7(0)=(1−α1)C(α1)α2tα2−1{M11y6(t)y8(t)−M13y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{M11y6(τ)y8(τ)−M13y7(τ)}(t−τ)α1−1dτ,y8(t)−y8(0)=(1−α1)C(α1)α2tα2−1{−M11y6(t)y8(t)+M13y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{{−M11y6(τ)y8(τ)+M13y7(τ)}}(t−τ)α1−1dτ, | (14) |
Let
k(t,y1(t))=α2tα2−1{−M1y1(t)+M2y2(t)+M3y3(t)+M4}, |
k(t,y2(t))=α2tα2−1{M1y1(t)−M5y2(t)}, |
k(t,y3(t))=α2tα2−1{−M6y3(t)+M2y4(t)+M7y5(t)}, |
k(t,y4(t))=α2tα2−1{M3y2(t)+M8y3(t)−M9y4(t)}, |
k(t,y5(t))=α2tα2−1{−M10y5(t)+M2y6(t)−M2y7(t)}, |
k(t,y6(t))=α2tα2−1{−M11y6(t)y8(t)+M12y4(t)+M8y5(t)−M2y6(t)+M12y7(t)}, |
k(t,y7(t))=α2tα2−1{M11y6(t)y8(t)−M13y7(t)}, |
k(t,y8(t))=α2tα2−1{−M11y6(t)y8(t)+M13y7(t)}. |
Then system (14) becomes
y1(t)−y1(0)=(1−α1)C(α1)k(t,y1(t))+α1C(α1)Γ(α1)∫t0k(τ,y1(τ))(t−τ)α1−1dτ,y2(t)−y2(0)=(1−α1)C(α1)k(t,y2(t))+α1C(α1)Γ(α1)∫t0k(τ,y2(τ))(t−τ)α1−1dτ,y3(t)−y3(0)=(1−α1)C(α1)k(t,y3(t))+α1C(α1)Γ(α1)∫t0k(τ,y3(τ))(t−τ)α1−1dτ,y4(t)−y4(0)=(1−α1)C(α1)k(t,y4(t))+α1C(α1)Γ(α1)∫t0k(τ,y4(τ))(t−τ)α1−1dτ,y5(t)−y5(0)=(1−α1)C(α1)k(t,y5(t))+α1C(α1)Γ(α1)∫t0k(τ,y5(τ))(t−τ)α1−1dτ,y6(t)−y6(0)=(1−α1)C(α1)k(t,y6(t))+α1C(α1)Γ(α1)∫t0k(τ,y6(τ))(t−τ)α1−1dτ,y7(t)−y7(0)=(1−α1)C(α1)k(t,y7(t))+α1C(α1)Γ(α1)∫t0k(τ,y7(τ))(t−τ)α1−1dτ,y8(t)−y8(0)=(1−α1)C(α1)k(t,y8(t))+α1C(α1)Γ(α1)∫t0k(τ,y8(τ))(t−τ)α1−1dτ, | (15) |
At tn+1=(n+1)Δt, we have
y1(tn+1)−y1(0)=(1−α1)C(α1)k(tn,y1(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y1(τ))(tn+1−τ)α1−1dτ,y2(tn+1)−y2(0)=(1−α1)C(α1)k(tn,y2(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y2(τ))(tn+1−τ)α1−1dτ,y3(tn+1)−y3(0)=(1−α1)C(α1)k(tn,y3(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y3(τ))(tn+1−τ)α1−1dτ,y4(tn+1)−y4(0)=(1−α1)C(α1)k(tn,y4(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y4(τ))(tn+1−τ)α1−1dτ,y5(tn+1)−y5(0)=(1−α1)C(α1)k(tn,y5(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y5(τ))(tn+1−τ)α1−1dτ,y6(tn+1)−y6(0)=(1−α1)C(α1)k(tn,y6(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y6(τ))(tn+1−τ)α1−1dτ,y7(tn+1)−y7(0)=(1−α1)C(α1)k(tn,y7(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y7(τ))(tn+1−τ)α1−1dτ,y8(tn+1)−y8(0)=(1−α1)C(α1)k(tn,y8(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y8(τ))(tn+1−τ)α1−1dτ. | (16) |
Also, we have
y1(tn+1)=y1(0)+(1−α1)C(α1)k(tn,y1(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y1(τ))(tn+1−τ)α1−1dτ,y2(tn+1)=y2(0)+(1−α1)C(α1)k(tn,y2(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y2(τ))(tn+1−τ)α1−1dτ,y3(tn+1)=y3(0)+(1−α1)C(α1)k(tn,y3(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y3(τ))(tn+1−τ)α1−1dτ,y4(tn+1)=y4(0)+(1−α1)C(α1)k(tn,y4(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y4(τ))(tn+1−τ)α1−1dτ,y5(tn+1)=y5(0)+(1−α1)C(α1)k(tn,y5(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y5(τ))(tn+1−τ)α1−1dτ,y6(tn+1)=y6(0)+(1−α1)C(α1)k(tn,y6(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y6(τ))(tn+1−τ)α1−1dτ,y7(tn+1)=y7(0)+(1−α1)C(α1)k(tn,y7(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y7(τ))(tn+1−τ)α1−1dτ,y8(tn+1)=y8(0)+(1−α1)C(α1)k(tn,y8(tn))+α1C(α1)Γ(α1)∑nj=0∫tj+1tjk(τ,y8(τ))(tn+1−τ)α1−1dτ. | (17) |
In general, approximating the function k\left(\tau, y\left(\tau \right)\right), using the Newton polynomial, we have
\begin{array}{l} {P}_{n}\left(\tau \right) = \frac{k\left({t}_{n}, y\left({t}_{n}\right)\right)}{{t}_{n}-{t}_{n-1}}\left(\tau -{t}_{n-1}\right)+\frac{k\left({t}_{n-1}, y\left({t}_{n-1}\right)\right)}{{t}_{n}-{t}_{n-1}}\left(\tau -{t}_{n}\right) = \frac{k\left({t}_{n}, y\left({t}_{n}\right)\right)}{h}\left(\tau -{t}_{n-1}\right)\frac{k\left({t}_{n-1}, y\left({t}_{n-1}\right)\right)}{h}\left(\tau -\\ {t}_{n}\right). \end{array} | (18) |
Using Eq (18) into system (17) we have
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\int_{{t}_{j}}^{{t}_{j+1}} \{k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)+\\ \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right)+\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)(\tau -\\ {t}_{j-1})\}{\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} | (19) |
Rearranging the above equation, we have
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}[\int_{{t}_{j}}^{{t}_{j+1}} k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau ], \end{array} | (20) |
Writing further system (20) we have
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} | (21) |
Now, calculating the integrals in system (21) we get
\int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}}}{{\alpha }_{1}}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right], |
\begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+1}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}(n-\\ j+3+3{\alpha }_{1})], \end{array} |
\begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+2}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)\left({\alpha }_{1}+2\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\\ \left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}]. \end{array} |
Inserting them into system (21) we get
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][{(n-j+1)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-(n-j+\\ 1)^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)]+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][(n-\\ j+1)^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+(5{\alpha }_{1}+\\ 10)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}] \end{array} | (22) |
Finally, we have the following approximation:
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{y}_{1}(t)+{M}_{2}{y}_{2}(t)+{M}_{3}{y}_{3}(t)+{M}_{4}\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+{M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+\\ {M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j}+{M}_{2}{{y}_{2}}^{j}+{M}_{3}{{y}_{3}}^{j}+{M}_{4}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+\\ {M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+\\ (3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}], \\ {{y}_{2}}^{n+1} = {{y}_{2}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{1}{y}_{1}(t)-{M}_{5}{y}_{2}(t)\}+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-\\ {M}_{5}{{y}_{2}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}-\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+\\ 3{\alpha }_{1})]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j}-{M}_{5}{{y}_{2}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-\\ {(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{3}}^{n+1} = {{y}_{3}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{y}_{3}(t)+{M}_{2}{y}_{4}(t)+{M}_{7}{y}_{5}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+{M}_{7}{{y}_{5}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j}+{M}_{2}{{y}_{4}}^{j}+\\ {M}_{7}{{y}_{5}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-\\ j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{4}}^{n+1} = {{y}_{4}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{3}{y}_{2}(t)+{M}_{8}{y}_{3}(t)-{M}_{9}{y}_{4}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-\\ {M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j}+{M}_{8}{{y}_{3}}^{j}-{M}_{9}{{y}_{4}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{5}}^{n+1} = {{y}_{5}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{y}_{5}(t)+{M}_{2}{y}_{6}(t)-{M}_{2}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-\\ {M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j}+{M}_{2}{{y}_{6}}^{j}-\\ {M}_{2}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+\\ {M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+\\ 10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+\\ 10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+\\ 12\}], \end{array} | (23) |
\begin{array}{l} {{y}_{6}}^{n+1} = {{y}_{6}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{y}_{6}(t){y}_{8}(t)+{M}_{12}{y}_{4}(t)+{M}_{8}{y}_{5}(t)-{M}_{2}{y}_{6}(t)+{M}_{12}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}[(n-\\ j+1)^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-\\ {M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+\\ {M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{12}{{y}_{4}}^{j}+{M}_{8}{{y}_{5}}^{j}-{M}_{2}{{y}_{6}}^{j}+{M}_{12}{{y}_{7}}^{j}\}-\\ 2{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-{M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2(n-\\ j)^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+\\ 6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array} |
\begin{array}{l} {{y}_{7}}^{n+1} = {{y}_{7}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{11}{y}_{6}(t){y}_{8}(t)-{M}_{13}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][(n-\\ j+1)^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}-{M}_{13}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array} |
\begin{array}{l} {{y}_{8}}^{n+1} = {{y}_{8}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{y}_{6}\left(t\right){y}_{8}\left(t\right)+{M}_{13}{y}_{7}\left(t\right)\right\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+\\ {M}_{13}{{y}_{7}}^{j-2}\}]\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{13}{{y}_{7}}^{j}\right\}-2{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}+\\ {t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\right][{\left(n-j+1\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{\left(n-j\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\right\}]. \end{array} |
A fractional-order model is proposed for analysis and simulation, to observe the concentration of chemicals in chemistry kinematics problems with a stiff differential equation. For this purpose, we used ABC with Mittage-Lefffier law, Atangana-Tufik scheme, and fractal fractional derivative for hires problem with given initial conditions. Details of parameters values of real data are also given in [18,19] which will consider for simulation analysis for the proposed study. Solution of compartment shows in Figures 1 to 8 with fractional fractal operator at different order. Effect of fraction order can easily be observed in simulation of the compartments having a concentration of chemical reaction with stiff differential equations. The concentration {y}_{1} and {y}_{8} of the chemical species start decreasing by decreasing fractional values respectively while concentration {y}_{2}, {y}_{3} , {y}_{4} , {y}_{5} , {y}_{6} and {y}_{7} of the chemical species start increasing by decreasing fractional values. These concentrations of chemical species converge to our desired value according to steady state by decreasing the fractional values which shows that it provides us appropriate results at non integer value. We can get better concentration of the components by using the fractional derivative which are very important for chemical problem to check the actual behavior of the concentration of the chemical with smallest changes in derivative with respect to time. It is also very important for solutions of nonlinear problems which are commonly used researcher and scientist in kinetics chemistry.
We examine the hires problems with stiff systems of nonlinear ordinary equations that rely on the concentration of chemical reaction of components in this study. The advanced techniques of fractional operator have been implemented for initial value problem arising from chemical reactions composed of large systems of stiff ordinary differential equations. The arbitrary derivative of fractional order has been taken with Atangana-Toufik scheme and fractal fractional derivative. Solutions have been obtained efficiently within limited time which shows the actual behavior of kinetic chemical reactions. Existence and uniqueness of results have been verified by fixed point theorem. Simulations are carried out for different fractional values. New chemical reactions can be done with the help of these analyses. These concepts are very important to use for real life problems like Brine tank cascade, Recycled Brine tank cascade, pond pollution, home heating and biomass transfer problem.
Research Supporting Project number (RSP-2021/167), King Saud University, Riyadh, Saudi Arabia.
No conflict of interest.
[1] | O. F. Mose, J. K. Sigey, J. A. Okello, J. M. Okwoyo, G. J. Kang'ethe, Mathematical modeling on the control of measles by vaccination: case study of Kisii county, Kenya, SIJ Trans. Comput. Sci. Eng. Appl., 2 (2014), 61–69. |
[2] |
S. M. Garba, M. A. Safi, S. Usaini, Mathematical model for assessing the impact of vaccination and treatment on measles transmission dynamics, Math. Meth. Appl. Sci., 40 (2017), 6371–6388. https://doi.org/10.1002/mma.4462 doi: 10.1002/mma.4462
![]() |
[3] |
M. G. Roberts, M. I. Tobias, Predicting and preventing measles epidemic in New Zealand: application of mathematical model, Epidemiol. Infect., 124 (2000), 279–287. https://doi.org/10.1017/S0950268899003556 doi: 10.1017/S0950268899003556
![]() |
[4] | G. Bolarin, On the dynamical analysis of a new model for measles infection, Int. J. Math. Trends Technol., 2 (2014), 144–155. |
[5] | World Health Organization, Measles, 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/measles. |
[6] |
R. T. Perry, N. A. Halsey, The clinical significance of measles: a review, J. Infect. Dis., 189 (2004), S4–S16. https://doi.org/10.1086/377712 doi: 10.1086/377712
![]() |
[7] |
K. Ejima, R. Omori, K. Aihara, H. Nishiura, Real-time investigation of measles epidemics with estimate of vaccine efficacy, Int. J. Biol. Sci., 8 (2012), 620–629. https://doi.org10.7150/ijbs.4329 doi: 10.7150/ijbs.4329
![]() |
[8] |
J. Mossong, C. P. Muller, Modelling measles re-emergence as a result of waning of immunity in vaccinated populations, Vaccine, 21 (2003), 4597–4603. https://doi.org/10.1016/S0264-410X(03)00449-3 doi: 10.1016/S0264-410X(03)00449-3
![]() |
[9] |
L. Taiwo, S. Idris, A. Abubakar, P. Nguku, P. Nsubuga, S. Gidado, et al., Factors affecting access to information on routine immunization among mothers of under 5 children in Kaduna state Nigeria, 2015, Pan. Afr. Med. J., 27 (2017), 1–8. https://doi.org/10.11604/pamj.2017.27.186.11191 doi: 10.11604/pamj.2017.27.186.11191
![]() |
[10] | Center for disease control. Available from: https://www.cdc.gov/vaccines/vpd/measles/indexhtml. |
[11] | World Health Organization, Eastern mediterranean vaccine action plan 2016–2020, A framework for implementation of the Global Vaccine Action Plan (No. WHO-EM/EPI/353/E), Regional Office for the Eastern Mediterranean, 2019. |
[12] |
Z. Memon, Q. Sania, B. R. Memon, Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan, Eur. Phys. J. Plus, 135 (2020), 378. https://doi.org/10.1140/epjp/s13360-020-00392-x doi: 10.1140/epjp/s13360-020-00392-x
![]() |
[13] |
P. Liu, T. Munir, T. Cui, A. Din, P. Wu, Mathematical assessment of the dynamics of the tobacco smoking model: an application of fractional theory, AIMS Math., 7 (2022), 7143–7165. https://doi.org/10.3934/math.2022398 doi: 10.3934/math.2022398
![]() |
[14] |
Y. Zhang, X. Ma, A. Din, Stationary distribution and extinction of a stochastic SEIQ epidemic model with a general incidence function and temporary immunity, AIMS Math., 6 (2021), 12359–12378. https://doi.org/10.3934/math.2021715 doi: 10.3934/math.2021715
![]() |
[15] |
P. Liu, R. Ikram, A. Khan, A. Din, The measles epidemic model assessment under real statistics: an application of stochastic optimal control theory, Comput. Methods Biomech. Biomed. Eng., 26 (2022), 138–159. https://doi.org/10.1080/10255842.2022.2050222 doi: 10.1080/10255842.2022.2050222
![]() |
[16] |
M. El-Fatini, I. Sekkak, Lévy noise impact on a stochastic delayed epidemic model with Crowly-Martin incidence and crowding effect, Phys. A: Stat. Mech. Appl., 541 (2020), 123315. https://doi.org/10.1016/j.physa.2019.123315 doi: 10.1016/j.physa.2019.123315
![]() |
[17] |
L. Huo, Y. Dong, T. Lin, Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise, Chin. Phys. B, 30 (2021), 080201. https://doi.org/10.1088/1674-1056/ac0423 doi: 10.1088/1674-1056/ac0423
![]() |
[18] | B. Berrhazi, M. El-Fatini, T. Caraballo Garrido, P. Roger, A stochastic SIRI epidemic model with Lévy noise, Discrete Cont. Dyn. Systems-Series B, 23 (2018), 3645–3661. |
[19] |
X. Wang, K. Wang, Z. Teng, Global dynamics and density function in a class of stochastic SVI epidemic models with Lévy jumps and nonlinear incidence, AIMS Math., 8 (2023), 2829–2855. https://doi.org/10.3934/math.2023148 doi: 10.3934/math.2023148
![]() |
[20] |
M. A. Kuddus, M. Mohiuddin, A. Rahman, Mathematical analysis of a measles transmission dynamics model in Bangladesh with double dose vaccination, Sci. Rep., 11 (2021), 16571. https://doi.org/10.1038/s41598-021-95913-8 doi: 10.1038/s41598-021-95913-8
![]() |
[21] |
Y. Zhao, D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34 (2014), 90–93. https://doi.org/10.1016/j.aml.2013.11.002 doi: 10.1016/j.aml.2013.11.002
![]() |
[22] |
Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
![]() |
[23] | M. R. Kristensen, Parameter estimation in nonlinear dynamical systems, Master's Thesis, Department of Chemical Engineering, Technical University of Denmark, 2004. |
[24] | A. R. Conn, N. I. M. Gould, P. L. Toint, Trust-region methods, MPS-SIAM Series on Optimization edition, SIAM Society for Industrial and Applied Mathematics, New Jersey: Englewood Cliffs, 2000. |
[25] |
J. R. Dormand, P. J. Prince, A family of embedded Runge–Kutta formulae, J. Comput. Appl. Math., 6 (1980), 19–26. https://doi.org/10.1016/0771-050X(80)90013-3 doi: 10.1016/0771-050X(80)90013-3
![]() |
[26] | E. Hairer, G. Wanner, S. Nørsett, Solving ordinary differential equations I, 2 Eds., Springer, 1993. https://doi.org/10.1007/978-3-540-78862-1 |
1. | Hira Soomro, Nooraini Zainuddin, Hanita Daud, Joshua Sunday, Noraini Jamaludin, Abdullah Abdullah, Mulono Apriyanto, Evizal Abdul Kadir, Variable Step Block Hybrid Method for Stiff Chemical Kinetics Problems, 2022, 12, 2076-3417, 4484, 10.3390/app12094484 | |
2. | Zeeshan Ali, Faranak Rabiei, Kamyar Hosseini, A fractal–fractional-order modified Predator–Prey mathematical model with immigrations, 2023, 207, 03784754, 466, 10.1016/j.matcom.2023.01.006 | |
3. | Sümeyra Uçar, Analysis of hepatitis B disease with fractal–fractional Caputo derivative using real data from Turkey, 2023, 419, 03770427, 114692, 10.1016/j.cam.2022.114692 | |
4. | Mohammad Partohaghighi, Ali Akgül, Rubayyi T. Alqahtani, New Type Modelling of the Circumscribed Self-Excited Spherical Attractor, 2022, 10, 2227-7390, 732, 10.3390/math10050732 | |
5. | G.M. Vijayalakshmi, Roselyn Besi. P, A fractal fractional order vaccination model of COVID-19 pandemic using Adam’s moulton analysis, 2022, 8, 26667207, 100144, 10.1016/j.rico.2022.100144 | |
6. | SHAIMAA A. M. ABDELMOHSEN, SHABIR AHMAD, MANSOUR F. YASSEN, SAEED AHMED ASIRI, ABDELBACKI M. M. ASHRAF, SAYED SAIFULLAH, FAHD JARAD, NUMERICAL ANALYSIS FOR HIDDEN CHAOTIC BEHAVIOR OF A COUPLED MEMRISTIVE DYNAMICAL SYSTEM VIA FRACTAL–FRACTIONAL OPERATOR BASED ON NEWTON POLYNOMIAL INTERPOLATION, 2023, 31, 0218-348X, 10.1142/S0218348X2340087X | |
7. | D.A. Tverdyi, R.I. Parovik, A.R. Hayotov, A.K. Boltaev, Распараллеливание численного алгоритма решения задачи Коши для нелинейного дифференциального уравнения дробного переменного порядка с помощью технологии OpenMP, 2023, 20796641, 87, 10.26117/2079-6641-2023-43-2-87-110 | |
8. | Khalid Hattaf, A New Class of Generalized Fractal and Fractal-Fractional Derivatives with Non-Singular Kernels, 2023, 7, 2504-3110, 395, 10.3390/fractalfract7050395 | |
9. | Ali Raza, Ovidiu V. Stadoleanu, Ahmed M. Abed, Ali Hasan Ali, Mohammed Sallah, Heat transfer model analysis of fractional Jeffery-type hybrid nanofluid dripping through a poured microchannel, 2024, 22, 26662027, 100656, 10.1016/j.ijft.2024.100656 | |
10. | Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen, New solutions of time-space fractional coupled Schrödinger systems, 2023, 8, 2473-6988, 27033, 10.3934/math.20231383 | |
11. | Muhammad Shahzad, Soma Mustafa, Sarbaz H A Khoshnaw, Inference of complex reaction mechanisms applying model reduction techniques, 2024, 99, 0031-8949, 045242, 10.1088/1402-4896/ad3291 | |
12. | B. El Ansari, E. H. El Kinani, A. Ouhadan, Symmetry analysis of the time fractional potential-KdV equation, 2025, 44, 2238-3603, 10.1007/s40314-024-02991-1 | |
13. | Muhammad Farman, Changjin Xu, Perwasha Abbas, Aceng Sambas, Faisal Sultan, Kottakkaran Sooppy Nisar, Stability and chemical modeling of quantifying disparities in atmospheric analysis with sustainable fractal fractional approach, 2025, 142, 10075704, 108525, 10.1016/j.cnsns.2024.108525 | |
14. | Hira Khan, Gauhar Rahman, Muhammad Samraiz, Kamal Shah, Thabet Abdeljawad, On Generalized Fractal-Fractional Derivative and Integral Operators Associated with Generalized Mittag-Leffler Function, 2025, 24058440, e42144, 10.1016/j.heliyon.2025.e42144 | |
15. | Emmanuel Kengne, Ahmed Lakhssassi, Dynamics of stochastic nonlinear waves in fractional complex media, 2025, 542, 03759601, 130423, 10.1016/j.physleta.2025.130423 |