Finding the best transportation project and logistic service provider is one for the most important aspects of the development of a country. This task becomes more complicated from time to time as different criteria are involved. Hence, this paper proposes an approach to the linguistic three-way decision-making (TWDs) problem for selecting sustainable transportation investments and logistic service providers with unknown criteria and expert weight information. To this end, we first propose a new tool, the Pythagorean double hierarchy linguistic term sets (PyDHLTSs), which is a combination of first hierarchy linguistic term sets and second hierarchy linguistic term sets which can describe uncertainty and fuzziness more flexibly in decision-making (DM) problems. In addition, we propose some aggregation operators and basic operational laws for PyDHLTSs. A new decision-making technique for PyDHLTSs based on decision-theoretic rough sets (DTRSs) is proposed in the three-way decisions. Next, the conditional probability is computed using grey relational analysis in a PyDHLTSs environment, which improves decision-making. The loss function is computed by using the proposed aggregation operator, and the decision's results are determined by the minimum-loss principle. Finally, a real-world case study of a transportation project and logistic service provider is considered to demonstrate the efficiency of the proposed methods.
Citation: Abbas Qadir, Shadi N. Alghaffari, Shougi S. Abosuliman, Saleem Abdullah. A three-way decision-making technique based on Pythagorean double hierarchy linguistic term sets for selecting logistic service provider and sustainable transportation investments[J]. AIMS Mathematics, 2023, 8(8): 18665-18695. doi: 10.3934/math.2023951
Finding the best transportation project and logistic service provider is one for the most important aspects of the development of a country. This task becomes more complicated from time to time as different criteria are involved. Hence, this paper proposes an approach to the linguistic three-way decision-making (TWDs) problem for selecting sustainable transportation investments and logistic service providers with unknown criteria and expert weight information. To this end, we first propose a new tool, the Pythagorean double hierarchy linguistic term sets (PyDHLTSs), which is a combination of first hierarchy linguistic term sets and second hierarchy linguistic term sets which can describe uncertainty and fuzziness more flexibly in decision-making (DM) problems. In addition, we propose some aggregation operators and basic operational laws for PyDHLTSs. A new decision-making technique for PyDHLTSs based on decision-theoretic rough sets (DTRSs) is proposed in the three-way decisions. Next, the conditional probability is computed using grey relational analysis in a PyDHLTSs environment, which improves decision-making. The loss function is computed by using the proposed aggregation operator, and the decision's results are determined by the minimum-loss principle. Finally, a real-world case study of a transportation project and logistic service provider is considered to demonstrate the efficiency of the proposed methods.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | K. T. Atanassov, Intuitionistic fuzzy sets, Springer-Verlag, Berlin, Heidelberg, 35 (1999), 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1 |
[3] | G. F. Yu, D. F. Li, D. C. Liang, G. X. Li, An intuitionistic fuzzy multi-objective goal programming approach to portfolio selection, Int. J. Inform. Technol. Decis. Mak., 20 (2021), 1477–1497. https://doi.org/10.1142/S0219622021500395 doi: 10.1142/S0219622021500395 |
[4] | G. F. Yu, D. F. Li, A novel intuitionistic fuzzy goal programming method for heterogeneous MADM with application to regional green manufacturing level evaluation under multi-source information, Comput. Ind. Eng., 174 (2022), 108796. https://doi.org/10.1016/j.cie.2022.108796 doi: 10.1016/j.cie.2022.108796 |
[5] | G. F. Yu, W. Fei, D. F. Li, A compromise-typed variable weight decision method for hybrid multiattribute decision making, IEEE T. Fuzzy Syst., 27 (2018), 861–872. https://doi.org/10.1109/TFUZZ.2018.2880705 doi: 10.1109/TFUZZ.2018.2880705 |
[6] | R. R. Yager, Pythagorean fuzzy subsets, In: Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, 2013. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[7] | R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989 |
[8] | L. A. Zadeh, What is computing with words (CWW), Stud. Fuzz. Soft Comput., 277 (2013), 3–37. https://doi.org/10.1007/978-3-642-27473-2_1 doi: 10.1007/978-3-642-27473-2_1 |
[9] | Z. Xu, H. Wang, On the syntax and semantics of virtual linguistic terms for information fusion in decision making, Inform. Fusion., 34 (2017), 43–48. https://doi.org/10.1016/j.inffus.2016.06.002 doi: 10.1016/j.inffus.2016.06.002 |
[10] | F. Herrera, L. Martinez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE T. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332 |
[11] | Z. Xu, A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Inform. Sci., 166 (2004), 19–30. https://doi.org/10.1016/j.ins.2003.10.006 doi: 10.1016/j.ins.2003.10.006 |
[12] | H. Zhang, Linguistic intuitionistic fuzzy sets and application in MAGDM, J. Appl. Math., 2014, 1–11. https://doi.org/10.1155/2014/432092 doi: 10.1155/2014/432092 |
[13] | F. Herrera, L. Martínez, A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making, IEEE T. Syst. Man Cy.-B, 31 (2001), 227–234. https://doi.org/10.1109/3477.915345 doi: 10.1109/3477.915345 |
[14] | H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process, Int. J. Intell. Syst., 33 (2018), 1234–1263. https://doi.org/10.1002/int.21979 doi: 10.1002/int.21979 |
[15] | X. Gou, H. Liao, Z. Xu, F. Herrera, Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: A case of study to evaluate the implementation status of haze controlling measures, Inform. Fusion, 38 (2017), 22–34. https://doi.org/10.1016/j.inffus.2017.02.008 doi: 10.1016/j.inffus.2017.02.008 |
[16] | X. Gou, H. Liao, Z. Xu, F. Herrera, Multiple criteria decision making based on distance and similarity measures under double hierarchy hesitant fuzzy linguistic environment, Comput. Ind. Eng., 126 (2018), 516–530. https://doi.org/10.1016/j.cie.2018.10.020 doi: 10.1016/j.cie.2018.10.020 |
[17] | X. Li, Z. Xu, H. Wang, Three-way decisions based on some Hamacher aggregation operators under double hierarchy linguistic environment, Int. J. Intell. Syst., 36 (2021), 7731–7753. https://doi.org/10.1002/int.22605 doi: 10.1002/int.22605 |
[18] | A. A. Rassa, M. Vaziri, Sustainable transport indicators: Definition and integration, Int. J. Environ. Sci. Technol., 2 (2005), 83–96. https://doi.org/10.1007/BF03325861 doi: 10.1007/BF03325861 |
[19] | A. Awasthi, S. S. Chauhan, H. Omrani, Application of fuzzy TOPSIS in evaluating sustainable transportation systems, Expert Syst. Appl., 38 (2011), 12270–12280. https://doi.org/10.1016/j.eswa.2011.04.005 doi: 10.1016/j.eswa.2011.04.005 |
[20] | T. A. Shiau, Evaluating transport infrastructure decisions under uncertainty, Transport. Plan. Techn., 37 (2014), 525–538. https://doi.org/10.1080/03081060.2014.921405 doi: 10.1080/03081060.2014.921405 |
[21] | M. Gul, A. F. Guneri, S. M. Nasirli, A fuzzy-based model for risk assessment of routes in oil transportation, Int. J. Environ. Sci. Te., 16 (2019), 4671–4686. https://doi.org/10.1007/s13762-018-2078-z doi: 10.1007/s13762-018-2078-z |
[22] | I. Essaadi, B. Grabot, P. Féniès, Location of global logistic hubs within Africa based on a fuzzy multi-criteria approach, Comput. Ind. Eng., 132 (2019), 1–22. https://doi.org/10.1016/j.cie.2019.03.046 doi: 10.1016/j.cie.2019.03.046 |
[23] | D. Pamučar, G. Ćirović, The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC), Expert Syst. Appl., 42 (2015), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057 doi: 10.1016/j.eswa.2014.11.057 |
[24] | K. Liu, J. Zhang, X. Yan, Y. Liu, D. Zhang, W. Hu, Safety assessment for inland waterway transportation with an extended fuzzy TOPSIS, Proc. I. Mech. Eng. P.-O J. Risk Reliab., 230 (2016), 323–333. https://doi.org/10.1177/1748006X16631869 doi: 10.1177/1748006X16631869 |
[25] | S. Samanta, D. K. Jana, A multi-item transportation problem with mode of transportation preference by MCDM method in interval type-2 fuzzy environment, Neural Comput. Appl., 31 (2019), 605–617. https://doi.org/10.1007/s00521-017-3093-6 doi: 10.1007/s00521-017-3093-6 |
[26] | V. Mohagheghi, S. M. Mousavi, B. Vahdani, Enhancing decision-making flexibility by introducing a new last aggregation evaluating approach based on multi-criteria group decision making and Pythagorean fuzzy sets, Appl. Soft Comput., 61 (2017), 527–535. https://doi.org/10.1016/j.asoc.2017.08.003 doi: 10.1016/j.asoc.2017.08.003 |
[27] | V. Mohagheghi, S. M. Mousavi, M. Aghamohagheghi, B. Vahdani, A new approach of multi-criteria analysis for the evaluation and selection of sustainable transport investment projects under uncertainty: A case study, Int. J. Comput. Intell. Syst., 10 (2017), 605–626. https://doi.org/10.2991/ijcis.2017.10.1.41 doi: 10.2991/ijcis.2017.10.1.41 |
[28] | M. Aghamohagheghi, S. M. Hashemi, R. Tavakkoli-Moghaddam, A new decision approach to the sustainable transport investment selection based on the generalized entropy and knowledge measure under an interval-valued Pythagorean fuzzy environment, Sci. Iran., 28 (2021), 892–911. https://doi.org/10.24200/SCI.2019.50131.1529 doi: 10.24200/SCI.2019.50131.1529 |
[29] | Z. Zhang, H. Zhang, L. Zhou, Zero-carbon measure prioritization for sustainable freight transport using interval 2 tuple linguistic decision approaches, Appl. Soft Comput., 132 (2023), 109864. https://doi.org/10.1016/j.asoc.2022.109864 doi: 10.1016/j.asoc.2022.109864 |
[30] | Z. Zhang, H. Zhang, L. Zhou, Y. Qin, L. Jia, Incomplete pythagorean fuzzy preference relation for subway station safety management during COVID-19 pandemic, Expert Syst. Appl., 216 (2023), 119445. https://doi.org/10.1016/j.eswa.2022.119445 doi: 10.1016/j.eswa.2022.119445 |
[31] | Y. Y. Yao, S. K. M. Wong, P. Lingras, A decision-theoretic rough set model, In: Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems, North-Holland, 1990, 17–24. |
[32] | Y. Y Yao, Three-way decision: An interpretation of rules in rough set theory, Rough Set. Knowl. Technol., 5589 (2009), 642–649. https://doi.org/10.1007/978-3-642-02962-2_81 doi: 10.1007/978-3-642-02962-2_81 |
[33] | Y. Y. Yao, Three-way decisions with probabilistic rough sets, Inform. Sci., 180 (2010), 341–353. https://doi.org/10.1016/j.ins.2009.09.021 doi: 10.1016/j.ins.2009.09.021 |
[34] | Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956 |
[35] | Y. Chien, Pattern classification and scene analysis, IEEE T. Automat. Contr., 19 (1974), 462–463. https://doi.org/10.1109/TAC.1974.1100577 doi: 10.1109/TAC.1974.1100577 |
[36] | X. Li, H. Wang, Z. Xu, Work resumption after epidemic using three-way decisions, Int. J. Fuzzy Syst., 23 (2021), 630–641. https://doi.org/10.1007/s40815-020-01006-5 doi: 10.1007/s40815-020-01006-5 |
[37] | X. Li, X. Huang, A novel three-way investment decisions based on decision-theoretic rough sets with hesitant fuzzy information, Int. J. Fuzzy Syst., 22 (2020), 2708–2719. https://doi.org/10.1007/s40815-020-00836-7 doi: 10.1007/s40815-020-00836-7 |
[38] | P. Wang, P. Zhang, Z. W. Li, A three-way decision method based on Gaussian kernel in a hybrid information system with images: An application in medical diagnosis, Appl. Soft Comput., 77 (2019), 734–749. https://doi.org/10.1016/j.asoc.2019.01.031 doi: 10.1016/j.asoc.2019.01.031 |
[39] | J., Zhu, X. Ma, J. Zhan, Y. Yao, A three-way multi-attribute decision making method based on regret theory and its application to medical data in fuzzy environments, Appl. Soft Comput., 123 (2022), 108975. https://doi.org/10.1016/j.asoc.2022.108975 doi: 10.1016/j.asoc.2022.108975 |
[40] | J. He, H. Zhang, Z. Zhang, J. Zhang, Probabilistic linguistic three-way multi-attibute decision making for hidden property evaluation of judgment debtor, J. Math., 2021, 1–16. https://doi.org/10.1155/2021/9941200 doi: 10.1155/2021/9941200 |
[41] | W. Wang, J. Zhan, C. Zhang, E. Herrera-Viedma, G. Kou, A regret-theory-based three-way decision method with a priori probability tolerance dominance relation in fuzzy incomplete information systems, Inform. Fusion, 89 (2023), 382–396. https://doi.org/10.1016/j.inffus.2022.08.027 doi: 10.1016/j.inffus.2022.08.027 |
[42] | J. Ye, J. Zhan, Z. Xu, A novel decision-making approach based on three-way decisions in fuzzy information systems, Inform. Sci., 541 (2020), 362–390. https://doi.org/10.1016/j.ins.2020.06.050 doi: 10.1016/j.ins.2020.06.050 |
[43] | D. Liang, D. Liu, Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets, Inform. Sci., 300 (2015), 28–48. https://doi.org/10.1016/j.ins.2014.12.036 doi: 10.1016/j.ins.2014.12.036 |
[44] | J. P. Herbert, J. T. Yao, Game-theoretic rough sets, Fund. Inform., 108 (2011), 267–286. https://doi.org/10.3233/FI-2011-423 doi: 10.3233/FI-2011-423 |
[45] | X. Jia, Z. Tang, W. Liao, L. Shang, On an optimization representation of decision-theoretic rough set model, Int. J. Approx. Reason., 55 (2014), 156–166. https://doi.org/10.1016/j.ijar.2013.02.010 doi: 10.1016/j.ijar.2013.02.010 |
[46] | F. Jia, P. Liu, A novel three-way decision model under multiple-criteria environment, Inform. Sci., 471 (2019), 29–51. https://doi.org/10.1016/j.ins.2018.08.051 doi: 10.1016/j.ins.2018.08.051 |
[47] | D. Liang, Z. Xu, D. Liu, Y. Wu, Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information, Inform. Sci., 435 (2018), 282–295. https://doi.org/10.1016/j.ins.2018.01.015 doi: 10.1016/j.ins.2018.01.015 |
[48] | Y. M. Wang, Using the method of maximizing deviation to make decision for multiindices, Syst. Eng. Electron., 8 (1997), 21–26. |
[49] | T. Wang, H. Li, X. Zhou, D. Liu, B. Huang, Three-way decision based on third-generation prospect theory with Z-numbers, Inform. Sci., 569 (2021), 13–38. https://doi.org/10.1016/j.ins.2021.04.001 doi: 10.1016/j.ins.2021.04.001 |
[50] | P. Liu, H. Yang, Three-way decisions with single-valued neutrosophic decision theory rough sets based on grey relational analysis, Math. Prob. Eng., 2019 (2019), 1–12. https://doi.org/10.1155/2019/3258018 doi: 10.1155/2019/3258018 |
[51] | A. Rényi, On measures of entropy and information, In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1961,547–562. |
[52] | D. Liang, D. Liu, A novel risk decision making based on decision-theoretic rough sets under hesitant fuzzy information, IEEE T. Fuzzy Syst., 23 (2014), 237–247. https://doi.org/10.1109/TFUZZ.2014.2310495 doi: 10.1109/TFUZZ.2014.2310495 |
[53] | L. Wang, H. Wang, Z. Xu, Z. Ren, A bi-projection model based on linguistic terms with weakened hedges and its application in risk allocation, Appl. Soft Comput. J., 87 (2020), 105996. https://doi.org/10.1016/j.asoc.2019.105996 doi: 10.1016/j.asoc.2019.105996 |
[54] | Y. Geng, P. Liu, F. Teng, Z. Liu, Pythagorean fuzzy uncertain linguistic TODIM method and their application to multiple criteria group decision making, J. Intell. Fuzzy Syst., 33 (2017), 3383–3395. https://doi.org/10.3233/JIFS-162175 doi: 10.3233/JIFS-162175 |
[55] | X. D. Liu, J. Zhu, S. Liu, Bidirectional projection method with hesitant fuzzy information, Syst. Eng. Theory Pract., 34 (2014), 2637–2644. |
[56] | D. Liu, T. Li, D. Liang, Three-way government decision analysis with decision-theoretic rough sets, Int. J. Uncertain. Fuzz., 20 (2012), 119–132. https://doi.org/10.1142/S0218488512400090 doi: 10.1142/S0218488512400090 |
[57] | D. Liu, Y. Yao, T. Li, Three-way investment decisions with decision-theoretic rough sets, Int. J. Comput. Intell. Syst., 4 (2011), 66–74. |
[58] | K. B. Salling, M. R. Pryn, Sustainable transport project evaluation and decision support: Indicators and planning criteria for sustainable development, Int. J. Sustain. Dev. World, 22 (2015), 346–357. https://doi.org/10.1080/13504509.2015.1051497 doi: 10.1080/13504509.2015.1051497 |
[59] | Z. Yue, An avoiding information loss approach to group decision making, Appl. Math. Model., 37 (2013), 112–126. https://doi.org/10.1016/j.apm.2012.02.008 doi: 10.1016/j.apm.2012.02.008 |
[60] | P. Tatham, Y. Wu, G. Kovács, T. Butcher, Supply chain management skills to sense and seize opportunities, Int. J. Logist. Manag., 28 (2017), 266–289. https://doi.org/10.1108/IJLM-04-2014-0066 doi: 10.1108/IJLM-04-2014-0066 |
[61] | L. Tu, Y. Lv, Y. Zhang, X. Cao, Logistics service provider selection decision making for healthcare industry based on a novel weighted density-based hierarchical clustering, Adv. Eng. Inform., 48 (2021), 101301. https://doi.org/10.1016/j.aei.2021.101301 doi: 10.1016/j.aei.2021.101301 |