The aim of this research article is to define locally rational contractions concerning control functions of one variable in the background of $ \mathcal{F} $-metric spaces and establish common fixed point results. We also introduce ($ \alpha ^{\ast } $-$ \psi) $-contractions and generalized ($ \alpha ^{\ast } $, $ \psi, \delta _{\mathcal{F}}) $-contractions in $ \mathcal{F} $-metric spaces and obtain fixed points of multifunctions. A non trivial example is also furnished to manifest the originality of the fundamental result. As application, we investigate the solution of nonlinear neutral differential equation.
Citation: Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad. On fixed point results in $ \mathcal{F} $-metric spaces with applications[J]. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863
The aim of this research article is to define locally rational contractions concerning control functions of one variable in the background of $ \mathcal{F} $-metric spaces and establish common fixed point results. We also introduce ($ \alpha ^{\ast } $-$ \psi) $-contractions and generalized ($ \alpha ^{\ast } $, $ \psi, \delta _{\mathcal{F}}) $-contractions in $ \mathcal{F} $-metric spaces and obtain fixed points of multifunctions. A non trivial example is also furnished to manifest the originality of the fundamental result. As application, we investigate the solution of nonlinear neutral differential equation.
[1] | M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palerm., 22 (1906), 1–72. |
[2] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[3] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra, 1 (1993), 5–11. |
[4] | V. Berinde, M. Păcurar, The early development in fixed point theory on $b$-metric spaces: A brief survey and some important related aspects, Carpathian J. Math., 38 (2022), 523–538. https://doi.org/10.37193/CJM.2022.03.01 doi: 10.37193/CJM.2022.03.01 |
[5] | J. Brzdek, Comments on the fixed point results in classes of function with values in a $b$-metric space, RACSAM Rev. R. Acad. A, 116 (2022), 1–17. https://doi.org/10.1007/s13398-021-01173-6 doi: 10.1007/s13398-021-01173-6 |
[6] | M. Paluszyński, K. Stempak, On quasi-metric and metric spaces, Proc. Am. Math. Soc., 137 (2009), 4307–4312. https://doi.org/10.1090/S0002-9939-09-10058-8 doi: 10.1090/S0002-9939-09-10058-8 |
[7] | M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 7 (2010), 3123–3129. https://doi.org/10.1016/j.na.2010.06.084 |
[8] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debr., 57 (2000), 31–37. https://doi.org/10.1023/A: 1009869405384 |
[9] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 2018 (2018), 128. |
[10] | A. E. Al-Mazrooei, J. Ahmad, Fixed point theorems for rational contractions in $\mathcal{F}$-metric spaces, J. Mat. Anal., 10 (2019), 79–86. |
[11] | B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha $ -$\psi$ contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 |
[12] | J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of $ \alpha$-$\psi$ contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 212. https://doi.org/10.1186/1687-1812-2012-212 doi: 10.1186/1687-1812-2012-212 |
[13] | A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math., 172 (2018), 481–490. https://doi.org/10.1016/j.trmi.2018.08.006 |
[14] | L. A. Alnaser, D. Lateef, H. A. Fouad, J. Ahmad, Relation theoretic contraction results in $\mathcal{F}$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337–344. https://doi.org/10.22436/jnsa.012.05.06 |
[15] | M. Alansari, S. S. Mohammed, A. Azam, Fuzzy fixed point results in $\mathcal{F}$-metric spaces with applications, J. Funct. Space., 2020 (2020), 5142815. https://doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815 |
[16] | L. A. Alnaser, J. Ahmad, D. Lateef, H. A. Fouad, New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 602. https://doi.org/10.3390/sym11050602 doi: 10.3390/sym11050602 |
[17] | S. A. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $\mathcal{F}$-metric spaces with applications, Mathematics, 8 (2020), 584. https://doi.org/10.3390/math8040584 doi: 10.3390/math8040584 |
[18] | O. Alqahtani, E. Karapınar, P. Shahi, Common fixed point results in function weighted metric spaces, J. Inequalities Appl., 164 (2019), 1–9. https://doi.org/10.1186/s13660-019-2123-6 |
[19] | D. Lateef, J. Ahmad, Dass and Gupta's fixed point theorem in $ \mathcal{F}$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405–411. https://doi.org/10.22436/jnsa.012.06.06 |
[20] | A. Hussain, F. Jarad, E. Karapinar, A study of symmetric contractions with an application to generalized fractional differential equations, Adv. Differ. Equ., 2021 (2021), 300. https://doi.org/10.1186/s13662-021-03456-z |
[21] | A. Hussain, Fractional convex type contraction with solution of fractional differential equation, AIMS Math., 5 (2020), 5364–5380. https://doi.org/10.3934/math.2020344 doi: 10.3934/math.2020344 |
[22] | A. Hussain, Solution of fractional differential equations utilizing symmetric contraction, J. Math., 2021 (2021), 1–17. https://doi.org/10.1155/2021/5510971 |
[23] | Z. Mitrovic, H. Aydi, N. Hussain, A. A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on $\mathcal{F}$-metric spaces and an application, Mathematics, 7 (2019), 2–11. https://doi.org/10.3390/math7050387 doi: 10.3390/math7050387 |
[24] | M. Mudhesh, N. Mlaiki, M. Arshad, A. Hussain, E. Ameer, R. George, et al., Novel results of $\alpha _{\ast }$-$\psi $-$\Lambda $-contraction multivalued mappings in $\mathcal{F}$-metric spaces with an application, J. Inequalities Appl., 113 (2022), 1–19. https://doi.org/10.1186/s13660-022-02842-9 doi: 10.1186/s13660-022-02842-9 |
[25] | A. Shoaib, Q. Mahmood, A. Shahzad, M. S. M. Noorani, S. Radenović, Fixed point results for rational contraction in function weighted dislocated quasi-metric spaces with an application, Adv. Differ. Equ., 310 (2021), 1–15. https://doi.org/10.1186/s13662-021-03458-x |
[26] | A. S. Anjum, C. Aage, Common fixed point theorem in $ \mathcal{F}$-metric spaces, J. Adv. Math. Stud., 15 (2022), 357–365. |
[27] | A. Latif, R. F. Al Subaie, M. O. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138. |
[28] | J. Brzdek, E. Karapınar, A. Petruşel, A fixed point theorem and the Ulam stability in generalized dq-metric spaces, J. Math. Anal. Appl., 467 (2018), 501–520. https://doi.org/10.1016/j.jmaa.2018.07.022 |
[29] | W. Hu, Q. Zhu, Existence, uniqueness and stability of mild solutions to a stochastic nonlocal delayed reaction-diffusion equation, Neural Process. Lett., 53 (2021), 3375–3394. https://doi.org/10.1007/s11063-021-10559-x |
[30] | X. Yang, Q. Zhu, Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type, J. Math. Phys., 56 (2015), 122701. https://doi.org/10.1063/1.4936647 |
[31] | A. Djoudi, R. Khemis, Fixed point techniques and stability for natural nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006), 25–34. https://doi.org/10.1515/GMJ.2006.25 |