Research article Special Issues

The improved giant magnetostrictive actuator oscillations via positive position feedback damper

  • Received: 17 February 2023 Revised: 23 April 2023 Accepted: 24 April 2023 Published: 15 May 2023
  • MSC : 34A34, 37N35, 70J99, 70K20, 74H10

  • This article contemplates the demeanor of the giant magnetostrictive actuator (GMA) when a positive position feedback (PPF) damper is used to enable tight control over its vibration. The methodology followed here mathematically searches for the approximate solution for the motion equations of the GMA with the PPF damper, which has been accomplished by using one of the most famous perturbation methods. The multiple scale perturbation technique (MSPT) of the second-order approximation is our strategy to obtain the analytical results. The stability of the system has also been investigated and observed by implementing frequency response equations to close the concurrent primary and internal resonance cases. By utilizing Matlab and Maple programs, all numerical discussions have been accomplished and explained. The resulting influence on the amplitude due to changes in the parameters' values has been studied by the frequency response curves. Finally, a comparison between both the analytical and numerical solutions using time history and response curves is made. In addition to the comparison between our PPF damper's effect on the GMA, previous works are presented. To get our target in this article, we have mentioned some important applications utilized in the GMA system just to imagine the importance of controlling the GMA vibration.

    Citation: Hany Bauomy, A. T. EL-Sayed, A. M. Salem, F. T. El-Bahrawy. The improved giant magnetostrictive actuator oscillations via positive position feedback damper[J]. AIMS Mathematics, 2023, 8(7): 16864-16886. doi: 10.3934/math.2023862

    Related Papers:

  • This article contemplates the demeanor of the giant magnetostrictive actuator (GMA) when a positive position feedback (PPF) damper is used to enable tight control over its vibration. The methodology followed here mathematically searches for the approximate solution for the motion equations of the GMA with the PPF damper, which has been accomplished by using one of the most famous perturbation methods. The multiple scale perturbation technique (MSPT) of the second-order approximation is our strategy to obtain the analytical results. The stability of the system has also been investigated and observed by implementing frequency response equations to close the concurrent primary and internal resonance cases. By utilizing Matlab and Maple programs, all numerical discussions have been accomplished and explained. The resulting influence on the amplitude due to changes in the parameters' values has been studied by the frequency response curves. Finally, a comparison between both the analytical and numerical solutions using time history and response curves is made. In addition to the comparison between our PPF damper's effect on the GMA, previous works are presented. To get our target in this article, we have mentioned some important applications utilized in the GMA system just to imagine the importance of controlling the GMA vibration.



    加载中


    [1] J. Liu, C. Jiang, H. Xu, Giant magnetostrictive materials, Sci. China Technol. Sci., 55 (2012), 1319–1326. https://doi.org/10.1007/s11431-012-4810-0 doi: 10.1007/s11431-012-4810-0
    [2] F. Claeyssen, N. Lhermet, R. Le Letty, P. Bouchilloux, Actuators, transducers, and motors based on giant magnetostrictive materials, J. Alloys Compd., 258 (1997), 61–73. https://doi.org/10.1016/S0925-8388(97)00070-4 doi: 10.1016/S0925-8388(97)00070-4
    [3] L. Zhu, X. Cao, Y. Lu, Design method and characteristics study on actuator of giant magnetostrictive Harmonic motor, J. Mech. Eng., 54 (2018), 204–211. https://doi.org/10.3901/JME.2018.22.204 doi: 10.3901/JME.2018.22.204
    [4] Z. W. Fang, Y. W. Zhang, X. Li, H. Ding, L. Q. Chen, Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester, J. Sound Vib., 391 (2017), 35–49. https://doi.org/10.1016/j.jsv.2016.12.019 doi: 10.1016/j.jsv.2016.12.019
    [5] Y. Zhu, Y. Li, Development of a deflector-jet electrohydraulic servovalve using a giant magnetostrictive material, Smart Mater. Struct., 23 (2014), 115001. https://doi.org/10.1088/0964-1726/23/11/115001 doi: 10.1088/0964-1726/23/11/115001
    [6] G. Xue, P. Zhang, Z. He, D. Li, Z. Yang, Z. Zhao, Displacement model and driving voltage optimization for a giant magnetostrictive actuator used on a high-pressure common-rail injector, Mater. Design, 95 (2016), 501–509. https://doi.org/10.1016/j.matdes.2016.01.139 doi: 10.1016/j.matdes.2016.01.139
    [7] J. Zhou, Z. He, C. Rong, G. Xue, A giant magnetostrictive rotary actuator: design, analysis and experimentation, Sensors Actuat. A: Phys., 287 (2019), 150–157. https://doi.org/10.1016/j.sna.2018.12.031 doi: 10.1016/j.sna.2018.12.031
    [8] G. Xue, P. Zhang, Z. He, B. Li, C. Rong, Design and model for the giant magnetostrictive actuator used on an electronic controlled injector, Smart Mater. Struct., 26 (2017), 05LT02. https://doi.org/10.1088/1361-665X/aa69a1 doi: 10.1088/1361-665X/aa69a1
    [9] X. Gao, Y. Liu, Research on control strategy in giant magnetostrictive actuator based on Lyapunov stability, IEEE Access, 7 (2019), 77254–77260. https://doi.org/10.1109/ACCESS.2019.2920853 doi: 10.1109/ACCESS.2019.2920853
    [10] Y. Liu, X. Gao, Y. Li, Giant magnetostrictive actuator nonlinear dynamic Jiles–Atherton model, Sensors Actuat. A: Phys., 250 (2016), 7–14. https://doi.org/10.1016/j.sna.2016.09.009 doi: 10.1016/j.sna.2016.09.009
    [11] G. Xue, P. Zhang, X. Li, Z. He, H. Wang, Y. Li, et al., A review of giant magnetostrictive injector (GMI), Sensors Actuat. A: Phys., 273 (2018), 159–181. https://doi.org/10.1016/j.sna.2018.02.001 doi: 10.1016/j.sna.2018.02.001
    [12] J. M. Nealis, R. C. Smith, Robust control of a magnetostrictive actuator, Smart Structures and Materials 2003: Modeling, Signal Processing, and Control, 5049 (2003), 221–232. https://doi.org/10.1117/12.482738 doi: 10.1117/12.482738
    [13] W. S. Oates, R. C. Smith, Nonlinear optimal control of plate structures using magnetostrictive actuators, Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, 5757 (2005), 281–291. https://doi.org/10.1117/12.602270 doi: 10.1117/12.602270
    [14] L. Wang, J. B. Tan, Y. T. Liu, Research on giant magnetostrictive micro-displacement actuator with self-adaptive control algorithm, J. Phys.: Conf. Ser., 13 (2005), 446–449. https://doi.org/10.1088/1742-6596/13/1/103 doi: 10.1088/1742-6596/13/1/103
    [15] P. Liu, J. Q. Mao, Q. S. Liu, K. M. Zhou, Modeling and H-infinity robust control for giant magnetostrictive actuators with rate-dependent hysteresis, Control Theory Appl., 30 (2013), 148–155. https://doi.org/10.7641/CTA.2013.20794 doi: 10.7641/CTA.2013.20794
    [16] H. Gao, Z. Deng, Y. Zhao, H. Yan, X. Zhang, L. Meng, et al., Time-delayed feedback control of nonlinear dynamics in a giant magnetostrictive actuator, Nonlinear Dyn., 108 (2022), 1371–1394. https://doi.org /10.1007/s11071-022-07265-1 doi: 10.1007/s11071-022-07265-1
    [17] W. Zhang, G. Meng, K. Wei, Dynamic characteristics of electrostatically actuated MEMS under parametric excitations, Chinese J. Theor. Appl. Mech., 41 (2009), 282–288. https://doi.org/10.6052/0459-1879-2009-2-2007-598 doi: 10.6052/0459-1879-2009-2-2007-598
    [18] A. T. El-Sayed, H. S. Bauomy, Nonlinear analysis of vertical conveyor with positive position feedback (PPF) controllers, Nonlinear Dyn., 83 (2016), 919–939. https://doi.org/10.1007/s11071-015-2377-6 doi: 10.1007/s11071-015-2377-6
    [19] A. T. El-Sayed, H. S. Bauomy, Outcome of special vibration controller techniques linked to a cracked beam, Appl. Math. Model., 63 (2018), 266–287. https://doi.org/10.1016/j.apm.2018.06.045 doi: 10.1016/j.apm.2018.06.045
    [20] E. Omidi, S. N. Mahmoodi, W. S. Shepard Jr, Multi positive feedback control method for active vibration suppression in flexible structures, Mechatronics, 33 (2016), 23–33. https://doi.org/10.1016/j.mechatronics.2015.12.003 doi: 10.1016/j.mechatronics.2015.12.003
    [21] N. Qi, Q. Yuan, Y. Liu, M. Huo, S. Cao, Consensus vibration control for large flexible structures of spacecraft with modified positive position feedback control, IEEE Trans. Control Syst. Technol., 27 (2018), 1712–1719. https://doi.org/10.1109/TCST.2018.2830301 doi: 10.1109/TCST.2018.2830301
    [22] Y. S. Hamed, A. El Shehry, M. Sayed, Nonlinear modified positive position feedback control of cantilever beam system carrying an intermediate lumped mass, Alex. Eng. J., 59 (2020), 3847–3862. https://doi.org/10.1016/j.aej.2020.06.039 doi: 10.1016/j.aej.2020.06.039
    [23] L. Jun, Positive position feedback control for high-amplitude vibration of a flexible beam to a principal resonance excitation, Shock Vib., 17 (2010), 187–203. https://doi.org/10.3233/SAV-2010-0506 doi: 10.1155/2010/286736
    [24] C. Shin, C. Hong, W. B. Jeong, Active vibration control of clamped beams using positive position feedback controllers with moment pair, J. Mech. Sci. Technol., 26 (2012), 731–740. https://doi.org/10.1007/s12206-011-1233-y doi: 10.1007/s12206-011-1233-y
    [25] W. A. El-Ganaini, N. A. Saeed, M. Eissa, Positive position feedback (PPF) controller for suppression of nonlinear system vibration, Nonlinear Dyn., 72 (2013), 517–537. https://doi.org/10.1007/s11071-012-0731-5 doi: 10.1007/s11071-012-0731-5
    [26] Y. A. Amer, A. T. EL-Sayed, A. M. Salem, Vibration control in MEMS resonator using positive position feedback (PPF) controller, J. Adv. Math., 12 (2016), 6821–6834. https://doi.org/10.24297/jam.v12i11.1114 doi: 10.24297/jam.v12i11.1114
    [27] M. Y. A. Jamalabadi, Positive position feedback control of a galloping structure, Acoustics, 1 (2019), 47–58. https://doi.org/10.3390/acoustics1010005 doi: 10.3390/acoustics1010005
    [28] H. S. Bauomy, A. T. EL-Sayed, A new six-degrees of freedom model designed for a composite plate through PPF controllers, Appl. Math. Model., 88 (2020), 604–630. https://doi.org/10.1016/j.apm.2020.06.067 doi: 10.1016/j.apm.2020.06.067
    [29] H. H. Syed, Comparative study between positive position feedback and negative derivative feedback for vibration control of a flexible arm featuring piezoelectric actuator, Int. J. Adv. Robotic Syst., 14 (2017), 1–9. https://doi.org/10.1177/1729881417718801 doi: 10.1177/1729881417718801
    [30] E. Omidi, S. N. Mahmoodi, Sensitivity analysis of the nonlinear integral positive position feedback and integral resonant controllers on vibration suppression of nonlinear oscillatory systems, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 149–166. https://doi.org/10.1016/j.cnsns.2014.10.011 doi: 10.1016/j.cnsns.2014.10.011
    [31] A. T. EL-Sayed, H. S. Bauomy, NIPPF versus ANIPPF controller outcomes on semi-direct drive cutting transmission system in a shearer, Chaos, Solitons Fract., 156 (2022), 111778. https://doi.org/10.1016/j.chaos.2021.111778 doi: 10.1016/j.chaos.2021.111778
    [32] H. Bauomy, A. Taha, Nonlinear saturation controller simulation for reducing the high vibrations of a dynamical system, Math. Biosci. Eng., 19 (2022), 3487–3508. https://doi.org/10.3934/mbe.2022161 doi: 10.3934/mbe.2022161
    [33] Y. A. Amer, A. T. EL-Sayed, F. T. El-Bahrawy, Positive position feedback controllers for reduction the vibration of a nonlinear spring pendulum, J. Adv. Math., 12 (2016), 6758–6772. https://doi.org/10.24297/jam.v12i11.7 doi: 10.24297/jam.v12i11.7
    [34] H. S. Bauomy, A. T. El-Sayed, Act of nonlinear proportional derivative controller for MFC laminated shell, Phys. Scripta, 95 (2020), 095210. https://doi.org/10.1088/1402-4896/abaa7c doi: 10.1088/1402-4896/abaa7c
    [35] X. Q. Fang, H. W. Ma, C. S. Zhu, Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force, Mech. Adv. Mater. Struct., 2023, 1–8. https://doi.org/10.1080/15376494.2022.2158503 doi: 10.1080/15376494.2022.2158503
    [36] C. S. Zhu, X. Q. Fang, J. X. Liu, Relationship between nonlinear free vibration behavior and nonlinear forced vibration behavior of viscoelastic plates, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106926. https://doi.org/10.1016/j.cnsns.2022.106926 doi: 10.1016/j.cnsns.2022.106926
    [37] A. H. Nayfeh, Perturbation methods, New York: Wiley, 2000. https://doi.org/10.1002/9783527617609
    [38] A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, New York: Wiley, 1995. https://doi.org/10.1002/9783527617586
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1110) PDF downloads(42) Cited by(3)

Article outline

Figures and Tables

Figures(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog