Research article

Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force

  • Received: 21 June 2023 Revised: 10 August 2023 Accepted: 20 August 2023 Published: 28 August 2023
  • MSC : 34A08, 34K37, 37N99

  • In the present paper, the primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force is studied. The approximately analytical solution and the amplitude-frequency equation are obtained using the multiple scale method. Based on the Lyapunov theory, the stability conditions for the steady-state solution are obtained. The bifurcations of primary resonance for system parameters are analyzed, and the influence of parameters on fractional-order model is also studied. Numerical simulation shows that when the parameter values are fixed, the curve bends to the right or left, resulting in jumping phenomena and multi-valued amplitudes. As the excitation frequency changes, the typical hardening or softening characteristics of the oscillator are observed. In addition, the comparisons of approximate analytical solution and numerical solution are fulfilled, and the results certify the correctness and satisfactory precision of the approximately analytical solution.

    Citation: Zhoujin Cui. Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force[J]. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271

    Related Papers:

  • In the present paper, the primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force is studied. The approximately analytical solution and the amplitude-frequency equation are obtained using the multiple scale method. Based on the Lyapunov theory, the stability conditions for the steady-state solution are obtained. The bifurcations of primary resonance for system parameters are analyzed, and the influence of parameters on fractional-order model is also studied. Numerical simulation shows that when the parameter values are fixed, the curve bends to the right or left, resulting in jumping phenomena and multi-valued amplitudes. As the excitation frequency changes, the typical hardening or softening characteristics of the oscillator are observed. In addition, the comparisons of approximate analytical solution and numerical solution are fulfilled, and the results certify the correctness and satisfactory precision of the approximately analytical solution.



    加载中


    [1] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. http://dx.doi.org/10.1142/3779
    [2] M. Xu, W. Tan, Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics, Sci. China Ser. G, 49 (2006), 257–272. http://dx.doi.org/10.1007/s11433-006-0257-2 doi: 10.1007/s11433-006-0257-2
    [3] R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Fractional order systems: modeling and control applications, Singapore: World Scientific, 2010. http://dx.doi.org/10.1142/7709
    [4] K. Lazopoulos, Stability criteria and $\Lambda$-fractional mechanics, Fractal Fract., 7 (2023), 248. http://dx.doi.org/10.3390/fractalfract7030248 doi: 10.3390/fractalfract7030248
    [5] Z. Wang, H. Hu, Stability of a linear oscillator with damping force of the fractional-order derivative, Sci. China Phys. Mech. Astron., 53 (2010), 345–352. http://dx.doi.org/10.1007/s11433-009-0291-y doi: 10.1007/s11433-009-0291-y
    [6] M. Du, Z. Wang, H. Hu, Measuring memory with the order of fractional derivative, Sci. Rep., 3 (2013), 3431. http://dx.doi.org/10.1038/srep03431 doi: 10.1038/srep03431
    [7] J. Gómez-Aguilar, Behavior characteristics of a cap-resistor, memcapacitor, and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations, Turk. J. Electr. Eng. Co., 24 (2016), 1421–1433. http://dx.doi.org/10.3906/elk-1312-49 doi: 10.3906/elk-1312-49
    [8] Q. Yang, D. Chen, T. Zhao, Y. Chen, Fractional calculus in image processing: a review, FCAA, 19 (2016), 1222–1249. http://dx.doi.org/10.1515/fca-2016-0063 doi: 10.1515/fca-2016-0063
    [9] A. Singh, D. Deb, H. Agrawal, K. Bingi, S. Ozana, Modeling and control of robotic manipulators: a fractional calculus point of view, Arab. J. Sci. Eng., 46 (2021), 9541–9552. http://dx.doi.org/10.1007/s13369-020-05138-6 doi: 10.1007/s13369-020-05138-6
    [10] E. Viera-Martin, J. Gómez-Aguilar, J. Solís-Pérez, J. Hernández-Pérez, R. Escobar-Jiménez, Artificial neural networks: a practical review of applications involving fractional calculus, Eur. Phys. J. Spec. Top., 231 (2022), 2059–2095. http://dx.doi.org/10.1140/epjs/s11734-022-00455-3 doi: 10.1140/epjs/s11734-022-00455-3
    [11] R. Sharma, K. Rana, V. Kumar, Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator, Expert Syst. Appl., 41 (2014), 4274–4289. http://dx.doi.org/10.1016/j.eswa.2013.12.030 doi: 10.1016/j.eswa.2013.12.030
    [12] W. Ahmad, R. El-Khazali, Fractional-order dynamical models of love, Chaos Soliton. Fract., 33 (2007), 1367–1375. http://dx.doi.org/10.1016/j.chaos.2006.01.098 doi: 10.1016/j.chaos.2006.01.098
    [13] Z. Cui, Z. Wang, Primary resonance of a nonlinear fractional model for cerebral aneurysm at the circle of Willis, Nonlinear Dyn., 108 (2022), 4301–4314. http://dx.doi.org/10.1007/s11071-022-07445-z doi: 10.1007/s11071-022-07445-z
    [14] J. Feng, W. Xu, H. Rong, R. Wang, Stochastic responses of Duffing-Van der Pol vibro-impact system under additive and multiplicative random excitations, Int. J. NonLin. Mech., 44 (2009), 51–57. http://dx.doi.org/10.1016/j.ijnonlinmec.2008.08.013 doi: 10.1016/j.ijnonlinmec.2008.08.013
    [15] K. Srinivasan, V. Chandrasekar, A. Venkatesan, I. Raja, Mohamed Duffing-van der Pol oscillator type dynamics in Murali-Lakshmanan-Chua (MLC) circuit, Chaos Soliton. Fract., 82 (2016), 60–71. http://dx.doi.org/10.1016/j.chaos.2015.11.005 doi: 10.1016/j.chaos.2015.11.005
    [16] S. Mall, S. Chakraverty, Hermite functional link neural network for solving the van der Pol-Duffing oscillator equation, Neural Comput., 28 (2016), 1574–1598. http://dx.doi.org/10.1162/NECO_a_00858 doi: 10.1162/NECO_a_00858
    [17] K. Wang, X. Yan, Q. Yang, X. Hao, J. Wang, Weak signal detection based on strongly coupled Duffing-Van der Pol oscillator and long short-term memory, J. Phys. Soc. Jpn., 89 (2020), 014003. http://dx.doi.org/10.7566/JPSJ.89.014003 doi: 10.7566/JPSJ.89.014003
    [18] A. Leung, H. Yang, P. Zhu, Neimark bifurcations of a generalized Duffing-van der Pol oscillator with nonlinear fractional order damping, Int. J. Bifurcat. Chaos, 23 (2013), 1350177. http://dx.doi.org/10.1142/S0218127413501770 doi: 10.1142/S0218127413501770
    [19] J. Tang, X. Li, M. Wang, Y. Shen, Z. Li, Dynamic response and vibration isolation effect of generalized fractional-order van der Pol-Duffing oscillator (Chinese), Journal of Vibration and Shock, 41 (2022), 10–18.
    [20] Z. Zhao, M. Zhang, S. Yang, H. Xing, A Duffing-van der Pol system's vibration behavior under multi-frequency excitation (Chinese), Journal of Vibration and Shock, 32 (2013), 76–79.
    [21] M. Sayed, S. Elagan, M. Higazy, M. Abd Elgafoor, Feedback control and stability of the Van der Pol equation subjected to external and parametric excitation forces, International Journal of Applied Engineering Research, 13 (2018), 3772–3783.
    [22] G. Kuiate, S. Kingni, V. Tamba, P. Talla, Three-dimensional chaotic autonomous Van der Pol-Duffing type oscillator and its fractional-order form, Chinese J. Phys., 56 (2018), 2560–2573. http://dx.doi.org/10.1016/j.cjph.2018.08.003 doi: 10.1016/j.cjph.2018.08.003
    [23] A. Leung, Z. Guo, H. Yang, Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators, Commun. Nonlinear Sci., 18 (2013), 2900–2915. http://dx.doi.org/10.1016/j.cnsns.2013.02.013 doi: 10.1016/j.cnsns.2013.02.013
    [24] A. Leung, H. Yang, P. Zhu, Periodic bifurcation of Duffing-van der Pol oscillators having fractional derivatives and time delay, Commun. Nonlinear Sci., 19 (2014), 1142–1155. http://dx.doi.org/10.1016/j.cnsns.2013.08.020 doi: 10.1016/j.cnsns.2013.08.020
    [25] S. Li, J. Niu, X. Li, Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method, Chinese Phys. B, 27 (2018), 120502. http://dx.doi.org/10.1088/1674-1056/27/12/120502 doi: 10.1088/1674-1056/27/12/120502
    [26] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [27] E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal.-Real, 13 (2012), 1489–1497. http://dx.doi.org/10.1016/j.nonrwa.2011.11.013 doi: 10.1016/j.nonrwa.2011.11.013
    [28] Y. Kang, Y. Xie, J. Lu, J. Jiang, On the nonexistence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical systems, Nonlinear Dyn., 82 (2015), 1259–1267. http://dx.doi.org/10.1007/s11071-015-2232-9 doi: 10.1007/s11071-015-2232-9
    [29] I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, Beijing: Higher Education Press, 2011.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(930) PDF downloads(47) Cited by(1)

Article outline

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog