In this paper, we will develop a different technique to study the rigidity of complete λ-translators x:M2→R3 with the non-zero constant gauss curvature in the Euclidean space R3.
Citation: Jin Liu, Botao Wang. A rigidity result for 2-dimensional λ-translators[J]. AIMS Mathematics, 2023, 8(10): 24947-24956. doi: 10.3934/math.20231272
[1] | Nural Yüksel . On dual surfaces in Galilean 3-space. AIMS Mathematics, 2023, 8(2): 4830-4842. doi: 10.3934/math.2023240 |
[2] | Yayun Chen, Tongzhu Li . Classification of spacelike conformal Einstein hypersurfaces in Lorentzian space Rn+11. AIMS Mathematics, 2023, 8(10): 23247-23271. doi: 10.3934/math.20231182 |
[3] | Yanlin Li, Erhan Güler, Magdalena Toda . Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Mathematics, 2024, 9(7): 18732-18745. doi: 10.3934/math.2024911 |
[4] | Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu . A class of hypersurfaces in En+1s satisfying Δ→H=λ→H. AIMS Mathematics, 2022, 7(1): 39-53. doi: 10.3934/math.2022003 |
[5] | Zhiqian He, Liangying Miao . Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space. AIMS Mathematics, 2020, 5(4): 3840-3850. doi: 10.3934/math.2020249 |
[6] | Derya Sağlam, Cumali Sunar . Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature. AIMS Mathematics, 2023, 8(2): 5036-5048. doi: 10.3934/math.2023252 |
[7] | Mutaz Al-Sabbagh . Surfaces of coordinate finite II-type. AIMS Mathematics, 2025, 10(3): 6258-6269. doi: 10.3934/math.2025285 |
[8] | Kai Wang, Xiheng Wang, Xiaoping Wang . Curvature estimation for point cloud 2-manifolds based on the heat kernel. AIMS Mathematics, 2024, 9(11): 32491-32513. doi: 10.3934/math.20241557 |
[9] | Haiming Liu, Xiawei Chen, Jianyun Guan, Peifu Zu . Lorentzian approximations for a Lorentzian α-Sasakian manifold and Gauss-Bonnet theorems. AIMS Mathematics, 2023, 8(1): 501-528. doi: 10.3934/math.2023024 |
[10] | Haiming Liu, Jiajing Miao . Gauss-Bonnet theorem in Lorentzian Sasakian space forms. AIMS Mathematics, 2021, 6(8): 8772-8791. doi: 10.3934/math.2021509 |
In this paper, we will develop a different technique to study the rigidity of complete λ-translators x:M2→R3 with the non-zero constant gauss curvature in the Euclidean space R3.
A λ-translating soliton (or, simply, a λ-translator) to the mean curvature flow is an immersed hypersurface x:Mn→Rn+1 in Rn+1 satisfying the equation
H+⟨ν,en+1⟩=λ. | (1.1) |
Here, and in what follows, H is the mean curvature, ν is a non-zero constant unit vector and en+1 denotes the unit normal vector field.
A special case of (1.1) is when λ=0. In such a case the immersion x is called a translating soliton of the mean curvature flow, or, simply, a translator [22]. Translators play an important role in the study of mean curvature flow. On one hand, a translating soliton is a solution of the mean curvature flow that evolves purely by translations along the direction T. On the other hand, they arise as blow-up solutions for a mean convex flow under type II singularities [9,11]. For instance, Huisken and Sinestrari [10] proved that, under the condition of a type II singularity of an MCF (i.e., an MCF with a mean convex solution), there exists a blow-up solution which is a convex translating solution. As we know, translating solitons have been widely studied and various interesting results have been obtained in recent years. For more information about translating solitons, please refer to the literature ([1,4,6,7,12,16,8,17,18,19,23,25]).
In 2018, López classified, in [14], all λ-translators in R3 that are invariant by a one-parameter group of translations and a one-parameter group of rotations. He also studied the shape of a compact λ-translator of R3 in terms of its boundary in [15]. Inspired by the work of Cheng and Wei [3], Li et al. [13] classified 2-dimensional complete λ-translators in the Euclidean space R3 and the Minkowski space R31 with constant squared norm S of the second fundamental form, which use the generalized maximum principle from [2]. Recently, Yang et al. [26] developed a new technique to study the rigidity of self-shrinkers. In this paper, we will use a similar method to study the classification theorem for 2-dimensional complete λ-translators with the non-zero constant Gauss curvature. The specific conclusions are as follows:
Theorem 1.1. There are no complete λ-translators with the non-zero constant Gauss curvature in R3.
Let x:M2→R3 be an isometric immersion of a surface of the 3-dimensional Euclidean space R3. Denote the Levi-Civita connections of M2 and R3 by ∇ and D, respectively. Around each point of M2, we choose a local orthonormal frame field {eA}3A=1 in R3 with the dual coframe field {ωA}3A=1 such that, restricted to M2, e1,e2 are tangent on M2 and e3 is a normal vector field. The gauss and weingarten formulae are given, respectively, by
Deiej=∇eiej+h(ei,ej), Deie3=−Ae3ei, | (2.1) |
where h and A are the second fundamental form and the shape operator, respectively. As we know, the second fundamental form h and the shape operator A are related by
hij=⟨h(ei,ej),e3⟩=⟨Ae3ei,ej⟩=A(ei,ej). |
Let
H=∑ihii, S=∑i,j(hij)2 |
be the mean curvature and the squared norm of the second fundamental form. For those points p∈M2, near which we could take a principal frame {e1,e2} such that
A(ei,ej)=hij=λiδij, |
the mean curvature H, the squared norm of the second fundamental form S and the Gauss curvature K are given, respectively, by
H=λ1+λ2, S=λ21+λ22, K=λ1λ2, H2−S=2K. |
For any fixed i,j,k, since ⟨ej,ej⟩=1 and ⟨ei,ej⟩=0 (i≠j), we have
{0=ei(⟨ej,ej⟩)=2⟨∇eiej,ej⟩, ∇eiej=∑k≠jΓkjiek,0=ek(⟨ei,ej⟩)=⟨∇ekei,ej⟩+⟨ei,∇ekej⟩=Γjik+Γijk |
for some smooth functions Γkji near p. Then,
Γ11i=Γ22i=0, Γ12i+Γ21i=0, i=1,2. | (2.2) |
It follows from A(ek,ek)=λk and A(ek,em)=0 (k≠m) that
ei(λk)=ei(A(ek,ek))=(∇eiA)(ek,ek)+2A(∇eiek,ek)=(∇eiA)(ek,ek)+2∑j≠kΓjkiA(ej,ek)=(∇eiA)(ek,ek)=hkki |
and
0=ei(A(ek,em))=(∇eiA)(ek,em)+A(∇eiek,em)+A(ek,∇eiem)=(∇eiA)(ek,em)+∑j≠kΓjkiA(ej,em)+∑j≠mΓjmiA(ek,ej)=hkmi+Γmkiλm+Γkmiλk. |
Thus,
ei(λk)=hkki, hkim=hkmi=Γmki(λk−λm). |
That is,
e1(λ2)=Γ122(λ2−λ1), e2(λ1)=Γ211(λ1−λ2). | (2.3) |
Since covariant differentiation is torsion free, by calculating the Lie bracket [e1,e2], it can be obtained that
e1⋅e2−e2⋅e1=[e1,e2]=∇e1e2−∇e2e1=Γ121e1−Γ212e2. | (2.4) |
Suppose that the given hypersurface x:Mn→R3 is a λ-translator with a translating vector ν. For a tangent C1-vector field V on M2, define a differential operator
ΔV(⋅)=Δ(⋅)+⟨V,∇(⋅)⟩, |
where Δ and ∇ denote the Laplacian and the gradient operator, respectively. Under the local orthonormal frame field {e1,e2}, from the definition (1.1) of the translator in R3, by a direct computation, we have the following basic formulas:
{e1(⟨ν,e1⟩)=Γ211⟨ν,e2⟩+λ1(λ−H),e1(⟨ν,e2⟩)=−Γ211⟨ν,e1⟩,e2(⟨ν,e1⟩)=−Γ122⟨ν,e2⟩,e2(⟨ν,e2⟩)=Γ122⟨ν,e1⟩+λ2(λ−H),e1(H)=λ1⟨ν,e1⟩,e2(H)=λ2⟨ν,e2⟩, | (2.5) |
and
Δ−VH=−S(H−λ), | (2.6) |
where V=ν⊤, i.e., the tangent component of the translating vector ν when restricted to M2.
In this section, by differentiating the eigenvalues of the shape operator on the set of umbilic points (cf. [5,20,21,24]), we are able to prove that the mean curvature H and the principal curvature are each constant. First, we assume that λ1 is not constant on an open set Θ⊂M2 which is composed of non-umbilic points. That is, λ21−K≠0 on Θ. Next, we will prove the following several important propositions.
Proposition 3.1. For the function λ1 defined on Θ⊂M2, we have
Kλ1(λ21−K)e1⋅e1(λ1)−K(λ21−3K)e21(λ1)−λ41e22(λ1)+Kλ41(λ21−λλ1+K)=0, | (3.1) |
λ1(λ21−K)e2⋅e1(λ1)+3Ke1(λ1)e2(λ1)=0, | (3.2) |
λ1(λ21−K)e1⋅e2(λ1)+(λ21+2K)e1(λ1)e2(λ1)=0, | (3.3) |
λ31(λ21−K)e2⋅e2(λ1)+λ21(λ21+K)e22(λ1)−K2e21(λ1)+K2λ21(λ21−λλ1+K)=0. | (3.4) |
Proof. For the convenience of calculation, assume that a=⟨ν,e1⟩ and b=⟨ν,e2⟩. Recall that λ2=Kλ1 and H=λ1+Kλ1; by the fifth and sixth equations of (2.5), we have
λ1a=e1(H)=λ21−Kλ21e1(λ1), λ2b=e2(H)=λ21−Kλ21e2(λ1). |
Thus,
{a=λ21−Kλ31e1(λ1), e1(a)=λ21−Kλ31e1⋅e1(λ1)−λ21−3Kλ41e21(λ1),e2(a)=λ21−Kλ31e2⋅e1(λ1)−λ21−3Kλ41e1(λ1)e2(λ1),b=λ21−KKλ1e2(λ1), e1(b)=λ21−KKλ1e1⋅e2(λ1)+λ21+KKλ21e1(λ1)e2(λ1),e2(b)=λ21−KKλ1e2⋅e2(λ1)+λ21+KKλ21e22(λ1). | (3.5) |
We will use (2.3) to get
Γ122=Kλ1(λ21−K)e1(λ1), Γ211=λ1λ21−Ke2(λ1). | (3.6) |
Substituting (3.5) and (3.6) into (2.5), we obtain (3.1)–(3.4).
Proposition 3.2. There exists a point p∈Θ⊂M2 such that e1(λ1)≠0 at p.
Proof. Assume that e1(λ1)=0 on Θ. Since λ1 is not constant on Θ, then there is a point p∈Θ such that e2(λ1)≠0.
It follows from (3.1) and (3.4) that
e22(λ1)=K(λ21−λλ1+K) | (3.7) |
and
λ1(λ21−K)e2⋅e2(λ1)+(λ21+K)e22(λ1)+K2(λ21−λλ1+K)=0. | (3.8) |
Differentiating (3.7) with respect to e2 yields
e2⋅e2(λ1)=12K(2λ1−λ). | (3.9) |
Substituting (3.7) and (3.9) into (3.8), we know
4λ41−3λλ31+4Kλ21−3λKλ1+4K2=0. |
It is obvious that λ1 is a constant function on Θ which contradicts the fact that there is a point p∈Θ such that e2(λ1)≠0.
Proposition 3.3. For the non-constant function λ1 on Θ⊂M2, the following two differential equations hold
λ21(λ21−K)2e1⋅e1⋅e1(λ1)−λ1(λ21−K)(λ21−13K)e1(λ1)e1⋅e1(λ1)−12K(λ21−2K)e31(λ1)+λ41(4λ41+4Kλ21−3λλ31−3λKλ1+4K2)e1(λ1)=0. | (3.10) |
2λ1(λ21−K)(λ21+K)e1(λ1)e1⋅e1(λ1)+6K(λ21+K)e31(λ1)+λ41(4λ41+4Kλ21−3λλ31−3λKλ1+4K2)e1(λ1)=0. | (3.11) |
Proof. In this part, we will consider the differential problems on a neighborhood U of p such that e1(λ1)≠0.
It follows from (3.1)–(3.4) and λ21−K≠0 that
{e22(λ1)=1λ41(Kλ1(λ21−K)e1⋅e1(λ1)−K(λ21−3K)e21(λ1)+Kλ41(λ21−λλ1+K)),e2⋅e1(λ1)=−3Kλ1(λ21−K)e1(λ1)e2(λ1),e1⋅e2(λ1)=−λ21+2Kλ1(λ21−K)e1(λ1)e2(λ1),e2⋅e2(λ1)=−1λ51(λ21−K)(Kλ1(λ21−K)(λ21+K)e1⋅e1(λ1)−K(λ41−Kλ21−3K2)e21(λ1)+Kλ41(λ21+2K)(λ21−λλ1+K)). | (3.12) |
Differentiating (3.1) with respect to e1 leads to
Kλ1(λ21−K)e1⋅e1⋅e1(λ1)+K(λ21+5K)e1(λ1)e1⋅e1(λ1)−2Kλ1e31(λ1)−4λ31e1(λ1)e22(λ1)−2λ41e2(λ1)e1⋅e2(λ1)+Kλ31(6λ21−5λλ1+4K)e1(λ1)=0. | (3.13) |
Substituting the first and third equations of (3.12) into (3.13) gives
Kλ1(λ21−K)e1⋅e1⋅e1(λ1)−K(λ21−13K)e1(λ1)e1⋅e1(λ1)−12K2(λ21−2K)λ1(λ21−K)e31(λ1)+Kλ31λ21−K(4λ41+4Kλ21−3λλ31−3λKλ1+4K2)e1(λ1)=0. |
Especially,
λ21(λ21−K)2e1⋅e1⋅e1(λ1)−λ1(λ21−K)(λ21−13K)e1(λ1)e1⋅e1(λ1)−12K(λ21−2K)e31(λ1)+λ41(4λ41+4Kλ21−3λλ31−3λKλ1+4K2)e1(λ1)=0. |
Differentiating (3.4) with respect to e1 yields
λ31(λ21−K)e1⋅e2⋅e2(λ1)+λ21(5λ21−3K)e1(λ1)e2⋅e2(λ1)+2λ1(2λ21+K)e1(λ1)e22(λ1)+2λ21(λ21+K)e2(λ1)e1⋅e2(λ1)−2K2e1(λ1)e1⋅e1(λ1)+K2λ1(4λ21−3λλ1+2K)e1(λ1)=0. | (3.14) |
Substituting the third equation of (3.12) into (3.14), we have
λ31(λ21−K)2e1⋅e2⋅e2(λ1)+λ21(λ21−K)(5λ21−3K)e1(λ1)e2⋅e2(λ1)+2λ1(λ41−4Kλ21−3K2)e1(λ1)e22(λ1)−2K2(λ21−K)e1(λ1)e1⋅e1(λ1)+K2λ1(λ21−K)(4λ21−3λλ1+2K)e1(λ1)=0. | (3.15) |
It follows from (2.4), (3.6) and the third equation of (3.12) that
e1⋅e2⋅e2(λ1)=e2⋅e1⋅e2(λ1)−Γ211e1⋅e2(λ1)+Γ122e2⋅e2(λ1)=e2⋅e1⋅e2(λ1)+λ21+2K(λ21−K)2e1(λ1)e22(λ1)+Kλ1(λ21−K)e1(λ1)e2⋅e2(λ1). | (3.16) |
Differentiating (3.3) with respect to e2 leads to
λ1(λ21−K)e2⋅e1⋅e2(λ1)+(3λ21−K)e2(λ1)e1⋅e2(λ1)+2λ1e1(λ1)e22(λ1)+(λ21+2K)e2(λ1)e2⋅e1(λ1)+(λ21+2K)e1(λ1)e2⋅e2(λ1)=0. | (3.17) |
Substituting the second and third equations of (3.12) into (3.17), we know that
λ21(λ21−K)2e2⋅e1⋅e2(λ1)−(λ41+10Kλ21+4K2)e1(λ1)e22(λ1)+λ1(λ21−K)(λ21+2K)e1(λ1)e2⋅e2(λ1)=0. | (3.18) |
Combining (3.16) with (3.18), we obtain
λ21(λ21−K)2e1⋅e2⋅e2(λ1)=(2λ41+12Kλ21+4K2)e1(λ1)e22(λ1)−λ1(λ21−K)(λ21+K)e1(λ1)e2⋅e2(λ1). |
And, by (3.15), we get
4λ21(λ21−K)2e1(λ1)e2⋅e2(λ1)+2λ1(2λ41+2Kλ21−K2)e1(λ1)e22(λ1)−2K2(λ21−K)e1(λ1)e1⋅e1(λ1)+K2λ1(λ21−K)(4λ21−3λλ1+2K)e1(λ1)=0, | (3.19) |
Substituting the first and fourth equations of (3.12) into (3.19) gives
2λ1K2(λ21−K)(λ21+K)e1(λ1)e1⋅e1(λ1)+6K3(λ21+K)e31(λ1)+K2λ41(4λ41+4Kλ21−3λλ31−3λKλ1+4K2)e1(λ1)=0. |
Proposition 3.4. For a 2-dimensional complete λ-translator x:M2→R3 with the non-zero constant Gauss curvature K, the mean curvature H is constant.
Proof. Since the Gauss curvature K is a non-zero constant on M2, we know that λ1≠0 and λ2≠0 on the whole of M2. We hereby declare that λ1 is a constant on M2. Then, λ2 and the mean curvature H must be a constant. In fact, let us assume that there is an open subset Θ⊂M2 such that λ1 is non-constant and λ1≠λ2. This implies that λ21−K≠0. For the convenience of calculation, take e1(λ1)=λ′1, e1⋅e1(λ1)=λ′′1 and e1⋅e1⋅e1(λ1)=λ′′′1. Differentiating (3.11) with respect to e1, we obtain
2λ1(λ21−K)(λ21+K)λ′1λ′′′1+2λ1(λ21−K)(λ21+K)(λ′′1)2+2(5λ41+9Kλ21+8K2)(λ′1)2λ′′1+12Kλ1(λ′1)4+λ41(4λ41+4Kλ21−3λλ31−3λKλ1+4K2)λ′′1+λ31(32λ41+24Kλ21−21λλ31−15λKλ1+16K2)(λ′1)2=0. | (3.20) |
It follows from (3.10) and (3.20) that
2λ21(λ21−K)2(λ21+K)(λ′′1)2+2λ1(λ21−K)(6λ41−3Kλ21−5K2)(λ′1)2λ′′1+12K(3λ41−3Kλ21−4K2)(λ′1)4+λ51(λ21−K)(4λ41+4Kλ21−3λλ31−3λKλ1+4K2)λ′′1+3λ41(8λ61−8Kλ41−8K2λ21−5λλ51+6λKλ31+7λK2λ1−8K3)(λ′1)2=0. | (3.21) |
Making use of (3.11) and (3.21), we obtain
4λ1(λ21−K)(3λ41−3Kλ21−4K2)(λ′1)3λ′′1+12K(3λ41−3Kλ21−4K2)(λ′1)5+3λ41(8λ61−8Kλ41−8K2λ21−5λλ51+6λKλ31+7λK2λ1−8K3)(λ′1)3=0. |
Thus,
4λ1(λ21−K)(3λ41−3Kλ21−4K2)λ′′1+12K(3λ41−3Kλ21−4K2)(λ′1)2+3λ41(8λ61−8Kλ41−8K2λ21−5λλ51+6λKλ31+7λK2λ1−8K3)=0 | (3.22) |
since λ′1≠0.
Finally, using (3.11) and (3.22) again, it can be obtained that
λ41(λ21−K)(3λλ51+6λKλ31−16K2λ21+3λK2λ1−8K3)=0. |
It is obvious that λ1 is a constant function. It is a contradiction.
The proof of Theorem 1.1. It follows from Proposition 3.4 that the mean curvature H is constant and each principal curvature is constant. Since the Gauss curvature K is a non-zero constant, it follows from (1.1) and (2.6) that
λ=H, ⟨ν,e3⟩=0. |
So, the non-zero constant vector ν=ν⊤ is tangent to x(M2) at each point of M2. It is obvious that x:M2→R3 is, locally, a plane or a cylinder. This is impossible since the Gauss curvature K is a non-zero constant. Theorem 1.1 is proved.
One concern is that hij=A(ei,ej) might not be differentiable in a local eigen frame if some positive principal curvatures repeat. However, in this article, we mainly study the principal curvature eigenvalues of the second fundamental form in the locally open set Θ composed of non-umbilic points. let {e1,e2} be the adapted moving frame around a point p in Θ. Then, for any eigenvalue λi(i=1,2) of multiplicity one and at the point p, it follows that principal curvatures are differentiable. By differentiating the eigenvalues of the shape operator on the set of umbilic points, we have that the mean curvature H and each principal curvature are constant.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
We would like to thank the anonymous referees for many valuable suggestions. The first author was supported by 2023 Teacher Education Curriculum Reform in Henan Province (Grant No. 2023-JSJYYB-023).
The authors declare no conflict of interest.
[1] |
S. J. Altschuler, L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differ. Equ., 2 (1994), 101–111. https://doi.org/10.1007/BF01234317 doi: 10.1007/BF01234317
![]() |
[2] |
Q. Chen, H. Qiu, Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv. Math., 294 (2016), 517–531. https://doi.org/10.1016/j.aim.2016.03.004 doi: 10.1016/j.aim.2016.03.004
![]() |
[3] |
Q. M. Cheng, G. Wei, Complete λ-surfaces in R3, Calc. Var. Partial Differ. Equ., 60 (2021), 46. https://doi.org/10.1007/s00526-021-01920-y doi: 10.1007/s00526-021-01920-y
![]() |
[4] |
J. Clutterbuck, O. C. Schnurer, F. Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differ. Equ., 29 (2007), 281–293. https://doi.org/10.1007/s00526-006-0033-1 doi: 10.1007/s00526-006-0033-1
![]() |
[5] |
A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z., 172 (1980), 273–280. https://doi.org/10.1007/BF01215090 doi: 10.1007/BF01215090
![]() |
[6] |
H. P. Halldorsson, Helicoidal surfaces rotating/translating under the mean curvature flow, Geom. Dedicata, 162 (2013), 45–65. https://doi.org/10.1007/s10711-012-9716-2 doi: 10.1007/s10711-012-9716-2
![]() |
[7] |
R. Haslhofer, Uniqueness of the bowl soliton, Geom. Topol., 19 (2015), 2393–2406. https://doi.org/10.2140/gt.2015.19.2393 doi: 10.2140/gt.2015.19.2393
![]() |
[8] | D. T. Hieu, N. M. Hoang, Ruled minimal surfaces in R3 with density ez, Pacific J. Math., 243 (2009), 277–285. |
[9] |
G. Huisken, C. Sinestrari, Mean curvature flow singularities for mean convex surfaces, Calc. Var. Partial Differ. Equ., 8 (1999), 1–14. https://doi.org/10.1007/s005260050113 doi: 10.1007/s005260050113
![]() |
[10] |
G. Huisken, C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45–70. https://doi.org/10.1007/BF02392946 doi: 10.1007/BF02392946
![]() |
[11] |
T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Am. Math. Soc., 108 (1994), 520. https://doi.org/10.1090/memo/0520 doi: 10.1090/memo/0520
![]() |
[12] |
D. Impera, M. Rimoldi, Rigidity results and topology at infinity of translating solitons of the mean curvature flow, Commun. Contemp. Math., 19 (2017), 1750002. https://doi.org/10.1142/S021919971750002X doi: 10.1142/S021919971750002X
![]() |
[13] |
X. Li, R. Qiao, Y. Liu, On the complete 2-dimensional λ-translators with a second fundamental form of constant length, Acta Math. Sci., 40 (2020), 1897–1914. https://doi.org/10.1007/s10473-020-0618-3 doi: 10.1007/s10473-020-0618-3
![]() |
[14] |
R. López, Invariant surfaces in Euclidean space with a log-linear density, Adv. Math., 339 (2018), 285–309. https://doi.org/10.1016/j.aim.2018.09.029 doi: 10.1016/j.aim.2018.09.029
![]() |
[15] |
R. López, Compact λ-translating solitons with boundary, Mediterr. J. Math., 15 (2018), 196. https://doi.org/10.1007/s00009-018-1241-6 doi: 10.1007/s00009-018-1241-6
![]() |
[16] |
F. Martin, A. Savas-Halilaj, K. Smoczyk, On the topology of translating solitons of the mean curvature flow, Calc. Var. Partial Differ. Equ., 54 (2015), 2853–2882. https://doi.org/10.1007/s00526-015-0886-2 doi: 10.1007/s00526-015-0886-2
![]() |
[17] |
J. Pyo, Compact translating solitons with non-empty planar boundary, Differ. Geom. Appl., 47 (2016), 79–85. https://doi.org/10.1016/j.difgeo.2016.03.003 doi: 10.1016/j.difgeo.2016.03.003
![]() |
[18] |
J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. R. Soc. Lond. Ser. A, 264 (1969), 413–496. https://doi.org/10.1098/rsta.1969.0033 doi: 10.1098/rsta.1969.0033
![]() |
[19] |
L. Shahriyari, Translating graphs by mean curvature flow, Geom. Dedicata, 175 (2015), 57–64. https://doi.org/10.1007/s10711-014-0028-6 doi: 10.1007/s10711-014-0028-6
![]() |
[20] |
J. Spruck, L. Xiao, Complete translating solitons to the mean curvature flow in R3 with nonnegative mean curvature, Amer. J. Math., 142 (2020), 993–1015. https://doi.org/10.1353/ajm.2020.0023 doi: 10.1353/ajm.2020.0023
![]() |
[21] |
J. Spruck, L. Sun, Convexity of 2-convex translating solitons to the mean curvature flow in Rn+1, J. Geom. Anal., 31 (2021), 4074–4091. https://doi.org/10.1007/s12220-020-00427-w doi: 10.1007/s12220-020-00427-w
![]() |
[22] |
X. J. Wang, Convex solutions to the mean curvature flow, Ann. Math., 173 (2011), 1185–1239. https://doi.org/10.4007/annals.2011.173.3.1 doi: 10.4007/annals.2011.173.3.1
![]() |
[23] |
B. White, Subsequent singularities in mean-convex mean curvature flow, Calc. Var. Partial Differ. Equ., 54 (2015), 1457–1468. https://doi.org/10.1007/s00526-015-0831-4 doi: 10.1007/s00526-015-0831-4
![]() |
[24] |
J. Xie, J. Yu, Convexity of 2-convex translating and expanding solitons to the mean curvature flow in Rn+1, J. Geom. Anal., 33 (2023), 252. https://doi.org/10.1007/s12220-023-01260-7 doi: 10.1007/s12220-023-01260-7
![]() |
[25] |
Y. L. Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differ. Equ., 54 (2015), 1995–2016. https://doi.org/10.1007/s00526-015-0853-y doi: 10.1007/s00526-015-0853-y
![]() |
[26] |
D. Yang, Y. Fu, Y. Luo, Some classifications of 2-dimensional self-shrinkers, J. Math. Anal. Appl., 524 (2023), 127089. https://doi.org/10.1016/j.jmaa.2023.127089 doi: 10.1016/j.jmaa.2023.127089
![]() |