In this paper, we define the Lorentzian approximations of a $ 3 $-dimensional Lorentzian $ \alpha $-Sasakian manifold. Moreover, we define the notions of the intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on Lorentzian surfaces and spacelike surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces and spacelike surfaces away from characteristic points. Furthermore, we derive the expressions of those curvatures and prove Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in the Lorentzian $ \alpha $-Sasakian manifold.
Citation: Haiming Liu, Xiawei Chen, Jianyun Guan, Peifu Zu. Lorentzian approximations for a Lorentzian $ \alpha $-Sasakian manifold and Gauss-Bonnet theorems[J]. AIMS Mathematics, 2023, 8(1): 501-528. doi: 10.3934/math.2023024
In this paper, we define the Lorentzian approximations of a $ 3 $-dimensional Lorentzian $ \alpha $-Sasakian manifold. Moreover, we define the notions of the intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on Lorentzian surfaces and spacelike surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces and spacelike surfaces away from characteristic points. Furthermore, we derive the expressions of those curvatures and prove Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in the Lorentzian $ \alpha $-Sasakian manifold.
[1] | A. Yildiz, C. Murathan, On Lorentzian $\alpha$-Sasakian manifolds, Kyungpook Math. J., 45 (2005), 95–103. |
[2] | L. S. Das, Second order parallel tensors on $\alpha$-Sasakian manifold, Acta Math. Acad. Paedagog. Nyiregyhaziensis, 2007 (2007), 65–69. |
[3] | D. G. Prakasha, C. S. Bagewadi, N. S. Basavarajappa, On pseudosymmetric Lorentzian $\alpha $-Sasakian manifolds, Int. J. Pure Appl. Math., 48 (2008), 57–65. |
[4] | A. Yildiz, M. Turan, C. Murathan, A class of Lorentzian $\alpha $-Sasakian manifolds, Kyungpook Math. J., 49 (2009), 789–799. https://doi.org/10.5666/KMJ.2009.49.4.789 doi: 10.5666/KMJ.2009.49.4.789 |
[5] | A. Yildiz, M. Turan, B. E. Acet, On three-dimensional Lorentzian $\alpha $-Sasakian manifolds, Bull. Math. Anal. Appl., 1 (2009), 90–98. |
[6] | D. G. Prakasha, A. Yildiz, Generalized $\phi $-recurrent Lorentzian $\alpha $-Sasakian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1., 59 (2010), 53–65. https://doi.org/10.1501/COMMUA1-0000000656 doi: 10.1501/COMMUA1-0000000656 |
[7] | S. Yadav, D. L. Suthar, Certain derivation on Lorentzian $\alpha$-Sasakian manifold, Math. Decision Sci., 12 (2012), 1–6. |
[8] | C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian $\alpha$-Sasakian manifolds, Acta Math. Acad. Paedagog. Nyiregyhaziensis, 2012 (2012), 59–68. https://doi.org/10.5402/2012/421384 doi: 10.5402/2012/421384 |
[9] | T. Dutta, N. Basu, B. Arindam, Conformal ricci soliton in Lorentzian $\alpha$-Sasakian manifolds, Acta Univ. Palacki. Olomuc. Math., 55 (2016), 57–70. |
[10] | S. Dey, P. Buddhadev, B. Arindam, Some classes of Lorentzian $\alpha$-Sasakian manifolds admitting a Quarter-symmetric metric connection, Acta. Univ. Palacki. Olomuc. Math., 10 (2017), 1–16. https://doi.org/10.1515/tmj-2017-0041 doi: 10.1515/tmj-2017-0041 |
[11] | K. K. Baishya, P. R. Chowdhury, Semi-symmetry type $\alpha $-Sasakian manifolds, Acta Math. Univ. Comen., 86 (2017), 91–100. |
[12] | D. G. Prakasha, F. O. Zengin, V. Chavan, On ${\mathcal {M}} $-projectively semisymmetric Lorentzian $\alpha $-Sasakian manifolds, Afr. Math., 28 (2017), 899–908. https://doi.org/10.1007/s13370-017-0493-9 doi: 10.1007/s13370-017-0493-9 |
[13] | Y. Wang, S. Wei, Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane, Results Math., 75 (2021), 1843–1860. |
[14] | Y. Wang, S. Wei, Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg group, Results Math., 75 (2020), 1–21. https://doi.org/10.1007/s00025-020-01254-9 doi: 10.1007/s00025-020-01254-9 |
[15] | Z. M. Balogh, J. T. Tyson, E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 287 (2017), 1–38. https://doi.org/10.1007/s00209-016-1815-6 doi: 10.1007/s00209-016-1815-6 |
[16] | Z. Balogh, J. Tyson, E. Vecchi, Correction to: Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 296 (2020), 875–876. https://doi.org/10.1007/s00209-016-1815-6 doi: 10.1007/s00209-016-1815-6 |
[17] | S. Wei, Y. Wang, Gauss-Bonnet theorems in the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane, Symmetry, 13 (2021), 173. https://doi.org/10.3390/sym13020173 doi: 10.3390/sym13020173 |
[18] | T. Wu, S. Wei, Y. Wang, Gauss-Bonnet theorems and the Lorentzian Heisenberg group, Turk. J. Math., 45 (2021), 718–741. https://doi.org/10.3906/mat-2011-19 doi: 10.3906/mat-2011-19 |
[19] | H. Liu, J. Miao, W. Li, J. Guan, The sub-Riemannian limit of curvatures for curves and surfaces and a Gauss-Bonnet theorem in the rototranslation group, J. Math., 2021 (2021), 1–22. https://doi.org/10.1155/2021/9981442 doi: 10.1155/2021/9981442 |
[20] | W. Li, H. Liu, Gauss-Bonnet theorem in the universal covering group of euclidean motion group E(2) with the general left-invariant metric J. Nonlinear Math. Phy., 29 (2022), 626–657. https://doi.org/10.1007/s44198-022-00052-x doi: 10.1007/s44198-022-00052-x |
[21] | H. Liu, J. Miao, Gauss-Bonnet theorem in Lorentzian Sasakian space forms, AIMS. Math., 6 (2021), 8772–8791. https://doi.org/10.3934/math.2021509 doi: 10.3934/math.2021509 |
[22] | J. Guan, H. Liu, The sub-Riemannian Limit of curvatures for curves and curfaces and a Gauss-Bonnet theorem in the group of rigid motions of Minkowski plane with general left-invariant metric, J. Funct. Spaces, 2021 (2021), 1–14. https://doi.org/10.1155/2021/1431082 doi: 10.1155/2021/1431082 |
[23] | L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhäuser, 2007. https://doi.org/10.1007/978-3-7643-8133-2 |