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1. Introduction

A A-translating soliton (or, simply, a A-translator) to the mean curvature flow is an immersed
hypersurface x : M" — R™! in R"*! satisfying the equation

H+ {(v,ep1) = A (1.1)

Here, and in what follows, H is the mean curvature, v is a non-zero constant unit vector and e,
denotes the unit normal vector field.

A special case of (1.1) is when 4 = 0. In such a case the immersion x is called a translating
soliton of the mean curvature flow, or, simply, a translator [22]. Translators play an important role
in the study of mean curvature flow. On one hand, a translating soliton is a solution of the mean
curvature flow that evolves purely by translations along the direction 7. On the other hand, they arise
as blow-up solutions for a mean convex flow under type II singularities [9, 11]. For instance, Huisken
and Sinestrari [10] proved that, under the condition of a type II singularity of an MCF (i.e., an MCF
with a mean convex solution), there exists a blow-up solution which is a convex translating solution.
As we know, translating solitons have been widely studied and various interesting results have been
obtained in recent years. For more information about translating solitons, please refer to the literature
([1,4,6,7,12,16, 8, 17, 18, 19, 23, 25]).

In 2018, Lépez classified, in [14], all A-translators in R? that are invariant by a one-parameter group
of translations and a one-parameter group of rotations. He also studied the shape of a compact A-
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translator of R* in terms of its boundary in [15]. Inspired by the work of Cheng and Wei [3], Li et
al. [13] classified 2-dimensional complete A-translators in the Euclidean space R* and the Minkowski
space R3 with constant squared norm S of the second fundamental form, which use the generalized
maximum principle from [2]. Recently, Yang et al. [26] developed a new technique to study the
rigidity of self-shrinkers. In this paper, we will use a similar method to study the classification theorem
for 2-dimensional complete A-translators with the non-zero constant Gauss curvature. The specific
conclusions are as follows:

Theorem 1.1. There are no complete A-translators with the non-zero constant Gauss curvature in R>.
2. Preliminaries

Let x : M? — R3 be an isometric immersion of a surface of the 3-dimensional Euclidean space R®.
Denote the Levi-Civita connections of M? and R® by V and D, respectively. Around each point of M?,
we choose a local orthonormal frame field {e,}3_, in R? with the dual coframe field {w"}3_, such that,
restricted to M?, e;, e, are tangent on M? and es is a normal vector field. The gauss and weingarten

formulae are given, respectively, by
D.ej=V,e;+ h(e,ej), D,e3 =-A.e;, 2.1

where & and A are the second fundamental form and the shape operator, respectively. As we know, the
second fundamental form % and the shape operator A are related by

hij = (h(e;, ej), e3) = (Ae3€i, €j> = A(e;, ej)-

H=) hi =) (h)
i ij

be the mean curvature and the squared norm of the second fundamental form. For those points p € M?,
near which we could take a principal frame {e;, e,} such that

Let

A(ei’ej) = hij = /1i5ij,

the mean curvature H, the squared norm of the second fundamental form S and the Gauss curvature K
are given, respectively, by

H=A4+A, S=2+1, K=44, H -S =2K.
For any fixed i, j, k, since (e;,e;) = 1 and (e;,e;) = 0 (i # j), we have
0 =eil(eje) = 2Veese)), Ve = ) Thes,
k#j
0 =er({ei,ej)) = (Ve ej) +(e,V,e;) = rfk + rljk
for some smooth functions F];i near p. Then,

I,=015=0, I'),+I7,=0, i=1,2. (2.2)

AIMS Mathematics Volume 8, Issue 10, 24947-24956



24949

It follows from A(eg, ex) = A and A(eg, e,,) = 0 (k # m) that

ei(Ay) = eil(Alex, er)) =(Ve,A)(ex, ex) + 2A(V e, er)
=(VeAew ) +2 ) TLA(e;, e)

j#k

=(V,A)(ex, ex) = hii

and
0= ei(A(ek’ em)) :(VeiA)(eka em) + A(Veieka em) + A(ek’ Veiem)
=(VeAXew en) + Y TLA(ejen) + Y Tl Alere))
J*k JEm

=i + T A, + T AL

Thus,

ei(A) = Migis Mim = iomi = Upi( A — Apy).
That is,

e1(y) =Th(Ay = A)), ex(A)) =T34 — ).

(2.3)

Since covariant differentiation is torsion free, by calculating the Lie bracket [e;,e,], it can be

obtained that

1 2
ejrep—ey-e =le,e]= Ve]€2 - Ve2€1 = Iﬂ21€’1 - Flzeg.

(2.4)

Suppose that the given hypersurface x : M" — R? is a A-translator with a translating vector v. For a

tangent C'-vector field V on M?, define a differential operator

Av() = AC) + V., V()),

where A and V denote the Laplacian and the gradient operator, respectively. Under the local
orthonormal frame field {e;,e,}, from the definition (1.1) of the translator in R?, by a direct

computation, we have the following basic formulas:

e1((v,er)) = T (v, ) + A1 (1 — H),
e1({(v,e2)) = —Fﬁ(% er),

er((v, e1)) = 3y (v, e2),

ex((v,e2)) =Ty (v, e1) + (A — H),
ei(H) = (v, e1),

er(H) = (v, e2),

and
A_yH =-S(H - A1),

where V = v7, i.e., the tangent component of the translating vector v when restricted to M?.

(2.5)

(2.6)
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3. The proof of Theorem 1.1

In this section, by differentiating the eigenvalues of the shape operator on the set of umbilic points
(cf. [5, 20, 21, 24]), we are able to prove that the mean curvature H and the principal curvature are
each constant. First, we assume that A; is not constant on an open set ® C M? which is composed of
non-umbilic points. That is, A7 — K # 0 on ©. Next, we will prove the following several important
propositions.

Proposition 3.1. For the function A, defined on ® C M?, we have

KA,(22 = K)ey - e1(A)) — K(2 = 3K)e3(A)) — Ajes(A)) + KAJ(A2 — A4, + K) = 0, (3.1
(22 = K)e, - e1(A)) + 3Ke (A))ex(4;) = 0, (3.2)

(A7 = K)ey - ex(A)) + (A7 + 2K)e  (A))ex(d)) = 0, (3.3)

LA = K)ey - ex(A)) + 1145 + K)es(4)) — K2ef(d)) + K* AT — A4, + K) = 0. (3.4)

Proof. For the convenience of calculation, assume that a = (v,e;) and b = (v, e;). Recall that A, = TKI
and H = 1, + TKI; by the fifth and sixth equations of (2.5), we have

2 2

A -  — K
ia=e(H) = Y e1(d1), b =eH)= g7 e2(Ay).
1 I

Thus,
2 2 2 _3K
a=——=—e(l), ei(a) = ———e - e(d) - ———e7 (),
A4 A A
- 3K
exa) = & e - el(d) - 7 er(Adex (),
! ! 3.5
b= K ), ey = )+ K e >
= = —_— . + —_—
K1, er(1y), € K1, €1 - e K/I? e1{Ay)éz(1y),
A -K B+K
ex(b) = K1 ey ex(dy) + K—/l%ez(/ll)-
We will use (2.3) to get
K A
L= ————(1), T2, = ——ey(1)). 3.6
22 /11(/1%—1()61( 1) 11 ﬂ%—Ke2( 1) (3.6)
Substituting (3.5) and (3.6) into (2.5), we obtain (3.1)—(3.4). O

Proposition 3.2. There exists a point p € ® C M? such that e;(1,) # 0 at p.

Proof. Assume that e;(1;) = 0 on ®. Since A, is not constant on ®, then there is a point p € ® such
that e;(1;) # 0.
It follows from (3.1) and (3.4) that

e3(A) = K(A2 - 2, + K) (3.7)
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and
(2 = K)ey - ex(A) + (A3 + K)ea(d;) + K* (22 — A4, + K) = 0. (3.8)

Differentiating (3.7) with respect to e, yields

1
ey - 62(/11) = EK(Z/M - /l) (39)
Substituting (3.7) and (3.9) into (3.8), we know
427 = 34] + 4KA7 — 31K, + 4K* = 0.

It is obvious that A, is a constant function on ® which contradicts the fact that there is a point p € ®
such that e,(1;) # 0. O

Proposition 3.3. For the non-constant function A, on ® C M?, the following two differential equations
hold
B = K)e; - er - e1(4)) = L,(A] — K)(A] = 13K)e (d))e; - e1(A))
— 12K(23 = 2K)ei(A)) + A](44] + 4K AT — 320 — 31K A, (3.10)
+4K*)e (1)) = 0.

20, (5 = K)(A7 + K)ei(A))e; - e (A)) + 6K (A7 + K)ei (1))

3.11
+ A{(4A} + 4K AT — 3127 — 34K A, + 4K?)e (1) = 0. G-

Proof. In this part, we will consider the differential problems on a neighborhood U of p such that
61(/11) # 0.
It follows from (3.1)—(3.4) and /l% — K # 0 that

1
) = (K447 = K)er - ea(l) = K (4 = 3K)ef(d)
1

+ K42 - a4, + K)),

er-e(dy) = —mel(ﬂl)ez(ﬂl),

(2=

22 V2K (3.12)
er-e(dy) = —mel(ﬂl)ez(ﬂl),
er- ex(dy) = - (K7 = K)(A] + K)er - er(A1)

(2% -K)
— K(A] = K47 = 3K%)ej () + KAJ(A7 + 2K)(A5 — A4, + K)).

Differentiating (3.1) with respect to e; leads to

K/ll(/l% - K)e;-e; e () + K(/ﬁ + 5K)e;(dy)e; - ei(A;)
—2KA1ei(4)) — 42ie1(A))er () — 24 ex(A))e; - ex(A)) (3.13)
+ KA3(647 — 544, + 4K)e (1)) = 0.
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Substituting the first and third equations of (3.12) into (3.13) gives

K445 = K)ey - ep - e1(4)) — K(A7 — 13K)e; (A))e; - er(d;)
12K%(A%2 - 2K K3
- “ )ef(/ll) + (4} + 4K 2 - 3208
(A -K) 2-K

— 31K, +4K%)e;(A;) = 0.

Especially,
(A7 = K)?e; - ey - e1(A1) — 11(A] — K)(A] — 13K)es())e; - e1(dy)

— 12K(A} = 2K)ei (1)) + A} (447 + 4K A3 - 324 - 31K,
+4K%)e (1)) = 0.
Differentiating (3.4) with respect to e; yields

L7 = Key - ey - ex(A)) + 11547 = 3K)ei(A))ey - e2(y)
+ 221222 + K)e1(A)ea () + 222(A3 + K)ey(d))e; - ex(A))
- 2K%e;(A))e; - e1(A)) + K22, (447 — 324, + 2K)e;(4;) = 0.

Substituting the third equation of (3.12) into (3.14), we have
B} = K)er - ey - () + 4147 = K)(5AT = 3K)er(d)es - ex(Ay)
+ 20 (A} — 4K A3 — 3K%)e (A1)e3(A) — 2K*(2 — K)e(A))ey - e1 ()
+ K2, (A3 — K)(4A7 — 324, + 2K)e (1)) = 0.

It follows from (2.4), (3.6) and the third equation of (3.12) that

ey -ep-exdy)

=e; - e - ex(A)) =TT e - ex(d)) + Thyer - €x(A)
2

=ey-e;-ey(d)) + —61(/11)65(/11) +

(/112 - K)2 e1(dy)e; - ex(y).
1

/11(/121’ -K)
Differentiating (3.3) with respect to e, leads to

(A7 = K)ey - ey - ex(y) + (327 — K)ea(d))ey - ex(Ay) + 22,e1(A1)ex(Ay)
+ (43 +2K)ex(A))es - e1(A)) + (A7 + 2K)ei(A))es - ex(d;) = 0.

Substituting the second and third equations of (3.12) into (3.17), we know that

B2 = K)’ey- e -ex(A)) — (A7 + 10KA3 + 4K?)e (1))ea(A))
+ (A3 = K)(A3 + 2K)ei(A))es - ex(11) = 0.

Combining (3.16) with (3.18), we obtain

/1%(/1% - K)2€1 ey - ex(dy)

=217 + 12KA3 + 4KHe (1))e3(A) — 1,(A3 = K)(A3 + K)ey(d))ey - ex(A).

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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And, by (3.15), we get

42222 - K)?ei(A))es - ex(Ay) + 22,247 + 2K A% — K?)e())e3 ()
—2K*(3 - K)ey(A))e; - e1(A)) + K22, (A2 = K)(4.23 - 34, (3.19)
+ 2K)€1(/11) = 0,

Substituting the first and fourth equations of (3.12) into (3.19) gives
24LK2(43 — K)(A1 + K)ey(A)e; - e1(A)) + 6K (AT + K)ej(A))
+ K2A7(427 + 4K 23 = 3203 — 34K, + 4K%)e (1) = 0.
O

Proposition 3.4. For a 2-dimensional complete A-translator x : M*> — R? with the non-zero constant
Gauss curvature K, the mean curvature H is constant.

Proof. Since the Gauss curvature K is a non-zero constant on M2, we know that 4, # 0 and A, # 0
on the whole of M?. We hereby declare that A, is a constant on M?. Then, 1, and the mean curvature
H must be a constant. In fact, let us assume that there is an open subset @ C M? such that A, is
non-constant and A; # A,. This implies that /lf — K # 0. For the convenience of calculation, take
ei(A)) = A}, e -e;(A;) = 2] and e; -e; - e;(4;) = A]". Differentiating (3.11) with respect to e;, we obtain

204 = K)(AT + K)A A + 24,47 — K)(A7 + K)(A])?
+2(52] + 9K AT + 8K () A + 12K, ()" + A7(44] + 4K A3

3.20
— 347 = 34K A, + 4K*)A] + A3(3247 + 24K A5 — 2120 — 151K, (5.20)
+ 16K*)(1))* = 0.
It follows from (3.10) and (3.20) that
2243 — K)* (A2 + K)(A))* + 22,(22 — K)(64] — 3K A2
— SKHA)?A] + 12K(3A} = 3KA3 — 4KH)(A)D* + (A3 - K)(447 3.21)
+4KAT — 3427 = 3AK A, + 4K*)A) +321(82% — 8K AT — 8K* A7 '
— 5205 + 64K A} + TAK* 4, — 8K*)(A))* = 0.
Making use of (3.11) and (3.21), we obtain
42,(23 = K)(3A} = 3KA] — 4KH)(A)* A + 12K(3A} — 3K AT — 4KH)(A))°
+327(828 — 8K A} — 8K?A7 — 5147 + 64K A + TAK*A; — 8K*)(1})* = 0.
Thus,
42,(A2 = K)(3A} = 3KA3 — 4KHA) + 12K(32] — 3KA3 — 4K*)(1))? 3.22)
+327(82° — 8K A} — 8K? AT — 5147 + 64K A + TAK*A; —8K?) = 0 '
since A7 # 0.
Finally, using (3.11) and (3.22) again, it can be obtained that
(A7 = K)(3AA] + 64K A} — 16K%47 + 31K A, — 8K°) = 0.
It is obvious that A, is a constant function. It is a contradiction. O
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The proof of Theorem 1.1. It follows from Proposition 3.4 that the mean curvature H is constant and
each principal curvature is constant. Since the Gauss curvature K is a non-zero constant, it follows
from (1.1) and (2.6) that

A=H, {(v,e3) =0.

So, the non-zero constant vector v = v' is tangent to x(M?) at each point of M?2. It is obvious that
x : M?> — R3is, locally, a plane or a cylinder. This is impossible since the Gauss curvature K is a
non-zero constant. Theorem 1.1 is proved.

4. Conclusions

One concern is that h;; = A(e;, e;) might not be differentiable in a local eigen frame if some
positive principal curvatures repeat. However, in this article, we mainly study the principal curvature
eigenvalues of the second fundamental form in the locally open set ® composed of non-umbilic
points. let {e, e;} be the adapted moving frame around a point p in ®. Then, for any eigenvalue A;
(i = 1,2) of multiplicity one and at the point p, it follows that principal curvatures are differentiable.
By differentiating the eigenvalues of the shape operator on the set of umbilic points, we have that the
mean curvature H and each principal curvature are constant.
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