In this study, we introduce a family of hypersurfaces of revolution characterized by six parameters in the seven-dimensional pseudo-Euclidean space $ {\mathbb{E}}_{3}^{7} $. These hypersurfaces exhibit intriguing geometric properties, and our aim is to analyze them in detail. To begin, we calculate the matrices corresponding to the fundamental form, Gauss map, and shape operator associated with this hypersurface family. These matrices provide essential information about the local geometry of the hypersurfaces, including their curvatures and tangent spaces. Using the Cayley-Hamilton theorem, we employ matrix algebra techniques to determine the curvatures of the hypersurfaces. This theorem allows us to express the characteristic polynomial of a matrix in terms of the matrix itself, enabling us to compute the curvatures effectively. In addition, we establish equations that describe the interrelation between the mean curvature and the Gauss-Kronecker curvature of the hypersurface family. These equations provide insights into the geometric behavior of the surfaces and offer a deeper understanding of their intrinsic properties. Furthermore, we investigate the relationship between the Laplace-Beltrami operator, a differential operator that characterizes the geometry of the hypersurfaces, and a specific $ 7\times 7 $ matrix denoted as $ \mathcal{A} $. By studying this relation, we gain further insights into the geometric structure and differential properties of the hypersurface family. Overall, our study contributes to the understanding of hypersurfaces of revolution in $ {\mathbb{ E}}_{3}^{7} $, offering mathematical insights and establishing connections between various geometric quantities and operators associated with this family.
Citation: Yanlin Li, Erhan Güler. Hypersurfaces of revolution family supplying $ \Delta \mathfrak{r} = \mathcal{A}\mathfrak{r} $ in pseudo-Euclidean space $ \mathbb{E}_{3}^{7} $[J]. AIMS Mathematics, 2023, 8(10): 24957-24970. doi: 10.3934/math.20231273
In this study, we introduce a family of hypersurfaces of revolution characterized by six parameters in the seven-dimensional pseudo-Euclidean space $ {\mathbb{E}}_{3}^{7} $. These hypersurfaces exhibit intriguing geometric properties, and our aim is to analyze them in detail. To begin, we calculate the matrices corresponding to the fundamental form, Gauss map, and shape operator associated with this hypersurface family. These matrices provide essential information about the local geometry of the hypersurfaces, including their curvatures and tangent spaces. Using the Cayley-Hamilton theorem, we employ matrix algebra techniques to determine the curvatures of the hypersurfaces. This theorem allows us to express the characteristic polynomial of a matrix in terms of the matrix itself, enabling us to compute the curvatures effectively. In addition, we establish equations that describe the interrelation between the mean curvature and the Gauss-Kronecker curvature of the hypersurface family. These equations provide insights into the geometric behavior of the surfaces and offer a deeper understanding of their intrinsic properties. Furthermore, we investigate the relationship between the Laplace-Beltrami operator, a differential operator that characterizes the geometry of the hypersurfaces, and a specific $ 7\times 7 $ matrix denoted as $ \mathcal{A} $. By studying this relation, we gain further insights into the geometric structure and differential properties of the hypersurface family. Overall, our study contributes to the understanding of hypersurfaces of revolution in $ {\mathbb{ E}}_{3}^{7} $, offering mathematical insights and establishing connections between various geometric quantities and operators associated with this family.
[1] | L. J. Alias, N. Gürbüz, An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geometriae Dedicata, 121 (2006), 113–127. https://doi.org/10.1007/s10711-006-9093-9 doi: 10.1007/s10711-006-9093-9 |
[2] | Y. Aminov, The geometry of submanifolds, Amsterdam: Gordon and Breach Sci. Pub., 2001. |
[3] | K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, G. Öztürk, Vranceanu surface in ${\mathbb{E}}^{4}$ with pointwise 1-type Gauss map, Indian J. Pure Appl. Math., 42 (2011), 41–51. https://doi.org/10.1007/s13226-011-0003-y doi: 10.1007/s13226-011-0003-y |
[4] | K. Arslan, B. K. Bayram, B. Bulca, G. Öztürk, Generalized rotation surfaces in ${\mathbb{E}}^{4}$, Results Math., 61 (2012), 315–327. https://doi.org/10.1007/s00025-011-0103-3 doi: 10.1007/s00025-011-0103-3 |
[5] | K. Arslan, B. Bulca, B. Kılıç, Y. H. Kim, C. Murathan, G. Öztürk, Tensor product surfaces with pointwıse 1-type Gauss map, Bull. Korean Math. Soc., 48 (2011), 601–609. https://doi.org/10.4134/BKMS.2011.48.3.601 doi: 10.4134/BKMS.2011.48.3.601 |
[6] | K. Arslan, V. Milousheva, Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwan. J. Math., 20 (2016), 311–332. https://doi.org/10.11650/tjm.20.2016.5722 doi: 10.11650/tjm.20.2016.5722 |
[7] | K. Arslan, A. Sütveren, B. Bulca, Rotational $\lambda $ -hypersurfaces in Euclidean spaces, Creat. Math. Inform., 30 (2021), 29–40. |
[8] | A. Arvanitoyeorgos, G. Kaimakamis, M. Magid, Lorentz hypersurfaces in $\mathbb{E}_{1}^{4}$ satisfying $\Delta H = \alpha H, $ Illinois J. Math., 53 (2009), 581–590. https://doi.org/10.1215/IJM/1266934794 doi: 10.1215/IJM/1266934794 |
[9] | M. Barros, B. Y. Chen, Stationary 2-type surfaces in a hypersphere, J. Math. Soc. Jap., 39 (1987), 627–648. https://doi.org/10.2969/jmsj/03940627 doi: 10.2969/jmsj/03940627 |
[10] | M. Barros, O. J. Garay, 2-type surfaces in $S^{3}$, Geometriae Dedicata, 24 (1987), 329–336. https://doi.org/10.1007/BF00181605 doi: 10.1007/BF00181605 |
[11] | B. Y. Chen, On submanifolds of finite type, Soochow J. Math., 9 (1983), 65–81. |
[12] | B. Y. Chen, Total mean curvature and submanifolds of finite type, Singapore: World Scientific, 1984. |
[13] | B. Y. Chen, Finite type submanifolds and generalizations, Rome: University of Rome, 1985. |
[14] | B. Y. Chen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J., 8 (1985), 358–374. https://doi.org/10.2996/kmj/1138037104 doi: 10.2996/kmj/1138037104 |
[15] | B. Y. Chen, P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161–186. https://doi.org/10.1017/S0004972700013162 doi: 10.1017/S0004972700013162 |
[16] | B. Y. Chen, E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Differential geometry of 1-type submanifolds and submanifolds with 1-type Gauss map, Int. Elec. J. Geom., 16 (2023), 4–49. https://doi.org/10.36890/iejg.1216024 doi: 10.36890/iejg.1216024 |
[17] | Q. M. Cheng, Q. R. Wan, Complete hypersurfaces of ${\mathbb{R}} ^{4}$ with constant mean curvature, Monatsh. Math., 118 (1994), 171–204. https://doi.org/10.1007/BF01301688 doi: 10.1007/BF01301688 |
[18] | S. Y. Cheng, S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195–204. https://doi.org/10.1007/BF01425237 doi: 10.1007/BF01425237 |
[19] | M. Choi, Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38 (2001), 753–761. |
[20] | F. Dillen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21. https://doi.org/10.2996/kmj/1138039155 doi: 10.2996/kmj/1138039155 |
[21] | M. Do Carmo, M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc., 277 (1983), 685–709. https://doi.org/10.1090/S0002-9947-1983-0694383-X doi: 10.1090/S0002-9947-1983-0694383-X |
[22] | U. Dursun, Hypersurfaces with pointwise 1-type Gauss map, Taiwan. J. Math., 11 (2007), 1407–1416. https://doi.org/10.11650/twjm/1500404873 doi: 10.11650/twjm/1500404873 |
[23] | A. Ferrandez, O. J. Garay, P. Lucas, On a certain class of conformally at Euclidean hypersurfaces, In Global Analysis and Global Differential Geometry, Springer: Berlin, Germany, 1990, 48–54. |
[24] | G. Ganchev, V. Milousheva, General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math., 38 (2014), 883–895. https://doi.org/10.3906/mat-1312-10 doi: 10.3906/mat-1312-10 |
[25] | O. J. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J., 11 (1988), 25–31. https://doi.org/10.2996/kmj/1138038815 doi: 10.2996/kmj/1138038815 |
[26] | O. J. Garay, An extension of Takahashi's theorem, Geometriae Dedicata, 34 (1990), 105–112. https://doi.org/10.1007/BF00147319 doi: 10.1007/BF00147319 |
[27] | E. Güler, Fundamental form $IV$ and curvature formulas of the hypersphere, Malaya J. Mat., 8 (2020), 2008–2011. https://doi.org/10.26637/MJM0804/0116 doi: 10.26637/MJM0804/0116 |
[28] | E. Güler, Rotational hypersurfaces satisfying $\Delta ^{I}R = AR$ in the four-dimensional Euclidean space, J. Polytech., 24 (2021), 517–520. https://doi.org/10.2339/POLITEKNIK.670333 doi: 10.2339/POLITEKNIK.670333 |
[29] | E. Güler, H. H. Hacısalihoǧlu, Y. H. Kim, The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space, Symmetry, 10 (2018), 1–12. https://doi.org/10.3390/sym10090398 doi: 10.3390/sym10090398 |
[30] | E. Güler, M. Magid, Y. Yaylı, Laplace -Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry. Phys., 41 (2016), 77–95. https://doi.org/10.7546/jgsp-41-2016-77-95 doi: 10.7546/jgsp-41-2016-77-95 |
[31] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface with $\Delta x = Ax$ in 4-space, Facta Universitatis (Nis) Ser. Math. Inform., 37 (2022), 917–928. |
[32] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space ${\mathbb{E}}^{4}$, Turkish J. Math., 46 (2022), 2167–2177. https://doi.org/10.55730/1300-0098.3261 |
[33] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface satisfying $\Delta ^{III}x = Ax$ in 4-space, Honam Math. J., 44 (2022), 219–230. |
[34] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface satisfying $\Delta x = Ax$ in pseudo-Euclidean space ${\mathbb{E}}_{2}^{4}$, TWMS J. Pure Appl. Math., Preprint. |
[35] | T. Hasanis, T. Vlachos, Hypersurfaces in ${\mathbb{E}}^{4}$ with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145–169. https://doi.org/10.1002/mana.19951720112 doi: 10.1002/mana.19951720112 |
[36] | D. S. Kim, J. R. Kim, Y. H. Kim, Cheng-Yau operator and Gauss map of surfaces of revolution, Bull. Malays. Math. Sci. Soc., 39 (2016), 1319–1327. https://doi.org/10.1007/s40840-015-0234-x doi: 10.1007/s40840-015-0234-x |
[37] | W. Kühnel, Differential geometry. Curves-surfaces-manifolds, 3 Eds., Translated from the 2013 German ed. AMS, Providence, RI, 2015. |
[38] | T. Levi-Civita, Famiglie di superficie isoparametriche nellordinario spacio euclideo, Rend. Acad. Lincei, 26 (1937), 355–362. |
[39] | Y. Li, E. Güler, A hypersurfaces of revolution family in the five-dimensional Pseudo-Euclidean space $\mathbb{E}_2^5$, Mathematics, 11 (2023), 3427. https://doi.org/10.3390/math11153427 doi: 10.3390/math11153427 |
[40] | C. Moore, Surfaces of rotation in a space of four dimensions, Ann. Math., 21 (1919), 81–93. https://doi.org/10.2307/2007223 doi: 10.2307/2007223 |
[41] | C. Moore, Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc., 26 (1920), 454–460. |
[42] | S. Stamatakis, H. Zoubi, Surfaces of revolution satisfying $\Delta ^{III}x = Ax$, J. Geom. Graph., 14 (2010), 181–186. |
[43] | T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. https://doi.org/10.2969/jmsj/01840380 doi: 10.2969/jmsj/01840380 |
[44] | D. W. Yoon, Some properties of the Clifford torus as rotation surfaces, Indian J. Pure Appl. Math., 34 (2003), 907–915. |