This paper revealed new fractional calculus applications of special functions in the geometric function theory. The aim of the study presented here was to introduce and begin the investigations on a new fractional calculus integral operator defined as the fractional integral of order $ \lambda $ for the Bessel function of the first kind. The focus of this research was on obtaining certain geometric properties that give necessary and sufficient univalence conditions for the new fractional calculus operator using the methods associated to differential subordination theory, also referred to as admissible functions theory, developed by Sanford S. Miller and Petru T. Mocanu. The paper discussed, in the proved theorems and corollaries, conditions that the fractional integral of the Bessel function of the first kind must comply in order to be a part of the sets of starlike functions, positive and negative order starlike functions, convex functions, positive and negative order convex functions, and close-to-convex functions, respectively. The geometric properties proved for the fractional integral of the Bessel function of the first kind recommend this function as a useful tool for future developments, both in geometric function theory in general, as well as in differential subordination and superordination theories in particular.
Citation: Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada. Certain geometric properties of the fractional integral of the Bessel function of the first kind[J]. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
This paper revealed new fractional calculus applications of special functions in the geometric function theory. The aim of the study presented here was to introduce and begin the investigations on a new fractional calculus integral operator defined as the fractional integral of order $ \lambda $ for the Bessel function of the first kind. The focus of this research was on obtaining certain geometric properties that give necessary and sufficient univalence conditions for the new fractional calculus operator using the methods associated to differential subordination theory, also referred to as admissible functions theory, developed by Sanford S. Miller and Petru T. Mocanu. The paper discussed, in the proved theorems and corollaries, conditions that the fractional integral of the Bessel function of the first kind must comply in order to be a part of the sets of starlike functions, positive and negative order starlike functions, convex functions, positive and negative order convex functions, and close-to-convex functions, respectively. The geometric properties proved for the fractional integral of the Bessel function of the first kind recommend this function as a useful tool for future developments, both in geometric function theory in general, as well as in differential subordination and superordination theories in particular.
[1] | D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021 (2021), 117. https://doi.org/10.1186/s13662-021-03270-7 doi: 10.1186/s13662-021-03270-7 |
[2] | H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. |
[3] | H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[4] | S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. |
[5] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–172. |
[6] | O. P. Ahuja, A. Çetinkaya, A Survey on the theory of integral and related operators in geometric function theory, In: Mathematical analysis and computing, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-33-4646-8_49 |
[7] | S. Owa, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53–59. |
[8] | S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., 39 (1987), 1057–1077. |
[9] | H. M. Srivastava, M. Saigo, S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl., 131 (1988), 412–420. https://doi.org/10.1016/0022-247X(88)90215-6 doi: 10.1016/0022-247X(88)90215-6 |
[10] | V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Comput. Math. Appl., 9 (2010), 1128–1141. https://doi.org/10.1016/j.camwa.2009.05.014 doi: 10.1016/j.camwa.2009.05.014 |
[11] | M. Acu, G. Oros, A. M. Rus, Fractional integral of the confluent hypergeometric function related to fuzzy differential subordination theory, Fractal Fract., 6 (2022), 413. https://doi.org/10.3390/fractalfract6080413 doi: 10.3390/fractalfract6080413 |
[12] | G. I. Oros, S. Dzitac, Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics, 10 (2022), 1690. https://doi.org/10.3390/math10101690 doi: 10.3390/math10101690 |
[13] | G. I. Oros, G. Oros, S. Owa, Subordination properties of certain operators concerning fractional integral and Libera integral operator, Fractal Fract., 7 (2023), 42. https://doi.org/10.3390/fractalfract7010042 doi: 10.3390/fractalfract7010042 |
[14] | F. Ghanim, S. Bendak, A. Al Hawarneh, Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions, Proc. R. Soc. A, 478 (2022), 20210839. |
[15] | A. A. Lupaş, G. I. Oros, Differential sandwich theorems involving Riemann-Liouville fractional integral of $q$-hypergeometric function, AIMS Mathematics, 8 (2023), 4930–4943. |
[16] | S. S. Miller, P. T. Mocanu, Differential subordinations, theory and applications, New York: Marcel Dekker, 2000. |
[17] | Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73 (2008), 155–178. |
[18] | Á. Baricz, Geometric properties of generalized Bessel functions, In: Generalized Bessel functions of the first kind, Berlin/Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-12230-9_2 |
[19] | Á. Baricz, S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21 (2010), 641–653. https://doi.org/10.1080/10652460903516736 doi: 10.1080/10652460903516736 |
[20] | Á Baricz, A. P. Kupán, R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Am. Math. Soc., 142 (2014), 2019–2025. |
[21] | Ç. Murat, E. Deniz, R. Szász, Radii of a-convexity of some normalized Bessel functions of the first kind, Results Math., 72 (2017), 2023–2035. |
[22] | L. I. Cotîrlă, A. P. Kupán, R. Szász, New results about radius of convexity and uniform convexity of Bessel functions, Axioms, 11 (2022), 380. https://doi.org/10.3390/axioms11080380 doi: 10.3390/axioms11080380 |
[23] | H. M. Zayed, T. Bulboacă, Normalized generalized Bessel function and its geometric properties, J. Inequal. Appl., 2022 (2022), 158. https://doi.org/10.1186/s13660-022-02891-0 doi: 10.1186/s13660-022-02891-0 |
[24] | A. Cătaş, A. A. Lupaş, Some subordination results for Atangana-Baleanu fractional integral operator involving Bessel functions, Symmetry, 14 (2022), 358. https://doi.org/10.3390/sym14020358 doi: 10.3390/sym14020358 |
[25] | B. A. Frasin, F. Yousef, T. Al-Hawary, I. Aldawish, Application of generalized Bessel functions to classes of analytic functions, Afr. Mat., 32 (2021), 431–439. |
[26] | T. Al-Hawary, A. Amourah, M. K. Aouf, B. A. Frasin, Certain subclasses of analytic functions with complex order associated with generalized Bessel functions, Bull. Transilv. Univ. Braşov, Ser. III, Math. Comput. Sci., 3 (2023), 27–40. https://doi.org/10.31926/but.mif.2023.3.65.1.3 |
[27] | G. I. Oros, G. Oros, D. A. Bardac-Vlada, Study on the criteria for starlikeness in integral operators involving Bessel functions, Symmetry, 15 (2023), 1976. https://doi.org/10.3390/sym15111976 doi: 10.3390/sym15111976 |
[28] | P. T. Mocanu, T. Bulboacă, S. G. Sălăgean, Geometric theory of analytic functions, Cluj-Napoca: Casa Cărţii de Ştiinţă, 1999. |
[29] | C. Pommerenke, Univalent functions, Göttingen: Vandenhoeck and Ruprecht, 1975. |
[30] | A. A. Lupaş, Fuzzy differential subordination and superordination results for fractional integral associated with Dziok-Srivastava operator, Mathematics, 11 (2023), 3129. https://doi.org/10.3390/math11143129 doi: 10.3390/math11143129 |
[31] | A. A. Lupaş, New results on a fractional integral of extended Dziok-Srivastava operator regarding strong subordinations and superordinations, Symmetry, 15 (2023), 1544. https://doi.org/10.3390/sym15081544 doi: 10.3390/sym15081544 |