Research article Special Issues

Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality

  • Received: 27 October 2021 Revised: 10 December 2021 Accepted: 20 December 2021 Published: 24 December 2021
  • MSC : 93C10, 93D05

  • In this paper, we study the exponential synchronization problem of a class of delayed memristive neural networks(MNNs). Firstly, a intermittent control scheme is designed to solve the parameter mismatch problem of MNNs. A discontinuous controller with two tunable scalars is designed, and the upper limit of control gain can be adjusted flexibly. Secondly, an augmented Lyaponov-Krasovskii functional(LKF) is proposed, and vector information of N-order canonical Bessel-Legendre(B-L) inequalities is introduced. LKF method is used to obtain the stability criterion to ensure exponential synchronization of the system. The conservatism of the result decreases with the increase of the order of the B-L inequality. Finally, the effectiveness of the main results is verified by two simulation examples.

    Citation: Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu. Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality[J]. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262

    Related Papers:

  • In this paper, we study the exponential synchronization problem of a class of delayed memristive neural networks(MNNs). Firstly, a intermittent control scheme is designed to solve the parameter mismatch problem of MNNs. A discontinuous controller with two tunable scalars is designed, and the upper limit of control gain can be adjusted flexibly. Secondly, an augmented Lyaponov-Krasovskii functional(LKF) is proposed, and vector information of N-order canonical Bessel-Legendre(B-L) inequalities is introduced. LKF method is used to obtain the stability criterion to ensure exponential synchronization of the system. The conservatism of the result decreases with the increase of the order of the B-L inequality. Finally, the effectiveness of the main results is verified by two simulation examples.



    加载中


    [1] S. Chen, J. Feng, J. Wang, Y. Zhao, Almost sure exponential synchronization of drive-response stochastic memristive neural networks, Appl. Math. Comput., 383 (2020), 125360. http://dx.doi.org/10.1016/j.amc.2020.125360 doi: 10.1016/j.amc.2020.125360
    [2] X.-S. Yang, D. W. C. Ho, Synchronization of delayed memristive neural networks: robust analysis approach, IEEE Trans. Cybern., 46 (2016), 3377–3387. http://dx.doi.org/10.1109/tcyb.2015.2505903 doi: 10.1109/tcyb.2015.2505903
    [3] H. Liu, Z. Wang, B. Shen, H. Dong, Delay-distribution-dependent H $\infty$ state estimation for discrete-time memristive neural networks with mixed time-delays and fading measurements, IEEE Trans. Cybern., 50 (2020), 440–451. http://dx.doi.org/10.1109/TCYB.2018.2862914 doi: 10.1109/TCYB.2018.2862914
    [4] L. Wang, Y. Shen, Q. Yin, G. Zhang, Adaptive synchronization of memristor-based neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 2033–2042. http://dx.doi.org/10.1109/tnnls.2014.2361776 doi: 10.1109/tnnls.2014.2361776
    [5] H. Liu, L. Ma, Z. Wang, Y. Liu, F. Alsaadi, An overview of stability analysis and state estimation for memristive neural networks, Neurocomputing, 391 (2020), 1–12. http://dx.doi.org/10.1016/j.neucom.2020.01.066 doi: 10.1016/j.neucom.2020.01.066
    [6] Z. Fei, C. Guan, H. Gao, Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 2558–2567. http://dx.doi.org/10.1109/tnnls.2017.2700321 doi: 10.1109/tnnls.2017.2700321
    [7] S. Jo, T. Chang, I. Ebong, B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in meuromorphic systems, Nano Lett.. 10 (2010), 1297–1301. http://dx.doi.org/10.1021/nl904092h doi: 10.1021/nl904092h
    [8] A. Wu, S. Wen, Z. Zeng, Synchronization control of a class of memristor-based recurrent neural networks, Inform. Sciences, 183 (2012), 106–116. http://dx.doi.org/10.1016/j.ins.2011.07.044 doi: 10.1016/j.ins.2011.07.044
    [9] Y. Wang, Y. Cao, Z. Guo, T. Huang, S. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm, Appl. Math. Comput., 383 (2020), 379–383. http://dx.doi.org/10.1016/j.amc.2020.125379 doi: 10.1016/j.amc.2020.125379
    [10] Y. Bao, Y. Zhang, Fixed-time dual-channel event-triggered secure quasi-synchronization of coupled memristive neural networks, J. Franklin Inst., 358 (2021), 10052–10078. http://dx.doi.org/10.1016/j.jfranklin.2021.10.023 doi: 10.1016/j.jfranklin.2021.10.023
    [11] L. Ma, Z. Wang, Y. Liu, F. E. Alsaadi, Exponential stabilization of nonlinear switched systems with distributed time-delay: An average dwell time approach, Eur. J. Control, 37 (2017), 34–42. http://dx.doi.org/10.1016/j.ejcon.2017.05.003 doi: 10.1016/j.ejcon.2017.05.003
    [12] L. Sun, Y. Tang, W. Wang, S. Shen, Stability analysis of time-varying delay neural networks based on new integral inequalitie, J. Franklin Inst., 357 (2020), 10828–10843. http://dx.doi.org/10.1016/j.jfranklin.2020.08.017 doi: 10.1016/j.jfranklin.2020.08.017
    [13] D. Liu, D. Ye, Exponential synchronization of memristive delayed neural networks via event-based impulsive control method, J. Franklin Inst., 357 (2020), 4437–4457. http://dx.doi.org/10.1016/j.jfranklin.2020.03.011 doi: 10.1016/j.jfranklin.2020.03.011
    [14] H. W. Ren, Z. P. Peng, Y. Gu, Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control, Neural Networks, 130 (2020), 165–175. http://dx.doi.org/10.1016/j.neunet.2020.07.002 doi: 10.1016/j.neunet.2020.07.002
    [15] X. Wang, X. Liu, K. She, S. Zhong, Pinning impulsive synchronization of complex dynamical networks with various time-varying delay sizes, Nonlinear Anal. Hybrid Syst., 26 (2017), 307–318. http://dx.doi.org/10.1016/j.nahs.2017.06.005 doi: 10.1016/j.nahs.2017.06.005
    [16] Y. Bao, Y. Zhang, B. Zhang, Fixed-time synchronization of coupled memristive neural networks via event-triggered control, Appl. Math. Comput., 411 (2021), 126542. http://dx.doi.org/10.1016/j.amc.2021.126542 doi: 10.1016/j.amc.2021.126542
    [17] Y. Zhang, Y. Bao, Event-triggered hybrid impulsive control for synchronization of memristive neural networks, Sci. China Inf. Sci., 63 (2020), 150206. http://dx.doi.org/10.1007/s11432-019-2694-y doi: 10.1007/s11432-019-2694-y
    [18] Y. Fan, X. Huang, H. Shen, J. Cao, Switching event-triggered control for global stabilization of delayed memristive neural networks: An exponential attenuation scheme, Neural Networks, 117 (2019), 216–224. http://dx.doi.org/10.1016/j.neunet.2019.05.014 doi: 10.1016/j.neunet.2019.05.014
    [19] C. Zhang, F. Xie, Synchronization of delayed memristive neural networks by establishing novel Lyapunov functional, Neurocomputing, 369 (2019), 80–91. http://dx.doi.org/10.1016/j.neucom.2019.08.060 doi: 10.1016/j.neucom.2019.08.060
    [20] J. H. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121–125. http://dx.doi.org/10.1016/j.automatica.2015.08.025 doi: 10.1016/j.automatica.2015.08.025
    [21] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. http://dx.doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [22] M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, E. J. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica, 55 (2015), 204–208. http://dx.doi.org/10.1016/j.automatica.2015.03.010 doi: 10.1016/j.automatica.2015.03.010
    [23] H. J. Yu, Y. He, M. Wu, Improved generalized $H_2$ filtering for static neural networks with time-varying delay via free-matrix-based integral inequality, Math. Probl. Eng., 2018 (2018), 5147565. http://dx.doi.org/10.1155/2018/5147565 doi: 10.1155/2018/5147565
    [24] P. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral/summation inequalities: application to continuous/discrete time-delay systems, Int. J. Control Autom. Syst., 14 (2016), 3–11. http://dx.doi.org/10.1007/s12555-015-2002-y doi: 10.1007/s12555-015-2002-y
    [25] A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, IEEE Trans. Autom. Control, 63 (2018), 225–232. http://dx.doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485
    [26] X.-M. Zhang, Q.-L. Long, Z. Zeng, Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities, IEEE Trans. Cybern. Control, 48 (2018), 1660–1671. http://dx.doi.org/10.1109/TCYB.2017.2776283 doi: 10.1109/TCYB.2017.2776283
    [27] H. Ren, J. Xiong, R. Lu, Y. Wu, Synchronization analysis of network systems applying sampled-data controller with time-delay via the Bessel-Legendre inequality, Neurocomputing, 331 (2019), 346–355. http://dx.doi.org/10.1016/j.neucom.2018.11.061 doi: 10.1016/j.neucom.2018.11.061
    [28] C.-K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE Trans. Autom. Control, 62 (2017), 5331–5336. http://dx.doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381
    [29] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. http://dx.doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [30] A. F. Filippov, Differential equations with discontinuous righthand side, Dordrecht: Springer, 1988. http://dx.doi.org/10.1007/978-94-015-7793-9
    [31] Z. Wu, J. H. Park, H. Su, B. Song, J. Chu, Exponential synchronization for complex dynamical networks with sampled-data, J. Franklin Inst., 349 (2012), 2735–2749. http://dx.doi.org/10.1016/j.jfranklin.2012.09.002 doi: 10.1016/j.jfranklin.2012.09.002
    [32] R. Zhang, D. Zeng, J. H. Park, S. Zhong, Y. Yu, Novel discontinuous control for exponential synchronization of memristive recurrent neural networks with heterogeneous time-varying delays, J. Franklin Inst., 355 (2018), 2826–2848. http://dx.doi.org/10.1016/j.jfranklin.2018.01.018 doi: 10.1016/j.jfranklin.2018.01.018
    [33] M. Syed Ali, M. Marudai, Stochastic stability of discrete-time uncertain recurrent neural networks with Markovian jumping and time-varying delays, Math. Comput. Model., 54 (2011), 1979–1988. http://dx.doi.org/10.1016/j.mcm.2011.05.004 doi: 10.1016/j.mcm.2011.05.004
    [34] X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84 (2017), 221–226. http://dx.doi.org/10.1016/j.automatica.2017.04.048 doi: 10.1016/j.automatica.2017.04.048
    [35] Y. Wang, L. Xie, C. E. De Souza, Robust control of a class of uncertain nonlinear system, Syst. Control Lett., 19 (1992), 139–149. http://dx.doi.org/10.1016/0167-6911(92)90097-C doi: 10.1016/0167-6911(92)90097-C
    [36] J. Sun, G. P. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46 (2010), 466–470. http://dx.doi.org/10.1016/j.automatica.2009.11.002 doi: 10.1016/j.automatica.2009.11.002
    [37] X. Yang, J. Cao, J. Liang, Exponential synchronization of memristive neural networks with delays: interval matrix method, IEEE Trans. Neural Netw. Learn. Syst., 28 (2017), 1878–1888. http://dx.doi.org/10.1109/tnnls.2016.2561298 doi: 10.1109/tnnls.2016.2561298
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2202) PDF downloads(146) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog