Research article

Modified function projective synchronization of master-slave neural networks with mixed interval time-varying delays via intermittent feedback control

  • Received: 15 June 2022 Revised: 07 August 2022 Accepted: 15 August 2022 Published: 22 August 2022
  • MSC : 34D06, 92B20, 93B52

  • The modified function projective synchronization problem for master-slave neural networks with mixed interval time-varying delays is presented using periodically intermittent feedback control. The interval distributed time-varying delay including the lower and upper bound is comprehensively established, which developed from the previous work. The following techniques are utilize to analyze the appropriate criteria for the modified function projective synchronization problem for master-slave neural networks with mixed interval time-varying delays such as the construction of appropriate Lyapunov-Krasovskii functionals merged with Newton-Leibniz formulation method, the intermittent feedback control technique, the reciprocally convex technique's lower bound lemma, Jensen's inequality, and the piecewise analytic method. The sufficient criteria for the modified function projective synchronization of the error system between the master and slave neural networks with intermittent feedback control are first established in terms of linear matrix inequalities (LMIs). The designed controller ensures that the synchronization of the error systems are proposed via intermittent feedback control. Finally, numerical examples are given to demonstrate the effectiveness of the proposed method.

    Citation: Rakkiet Srisuntorn, Wajaree Weera, Thongchai Botmart. Modified function projective synchronization of master-slave neural networks with mixed interval time-varying delays via intermittent feedback control[J]. AIMS Mathematics, 2022, 7(10): 18632-18661. doi: 10.3934/math.20221025

    Related Papers:

  • The modified function projective synchronization problem for master-slave neural networks with mixed interval time-varying delays is presented using periodically intermittent feedback control. The interval distributed time-varying delay including the lower and upper bound is comprehensively established, which developed from the previous work. The following techniques are utilize to analyze the appropriate criteria for the modified function projective synchronization problem for master-slave neural networks with mixed interval time-varying delays such as the construction of appropriate Lyapunov-Krasovskii functionals merged with Newton-Leibniz formulation method, the intermittent feedback control technique, the reciprocally convex technique's lower bound lemma, Jensen's inequality, and the piecewise analytic method. The sufficient criteria for the modified function projective synchronization of the error system between the master and slave neural networks with intermittent feedback control are first established in terms of linear matrix inequalities (LMIs). The designed controller ensures that the synchronization of the error systems are proposed via intermittent feedback control. Finally, numerical examples are given to demonstrate the effectiveness of the proposed method.



    加载中


    [1] Y. Liu, Z. Wang, X. Liu, Globally exponential satbility of generalized recurrent neural networks with discrete and distributed delays, Neural Networks, 19 (2006), 667–675. http://dx.doi.org/10.1016/j.neunet.2005.03.015 doi: 10.1016/j.neunet.2005.03.015
    [2] P. Zhou, S. Cai, Adaptive exponential lag synchronization for neural networks with mixed delays via intermittent control, Adv. Differ. Equ., 2018 (2018), 40. http://dx.doi.org/10.1186/s13662-018-1498-x doi: 10.1186/s13662-018-1498-x
    [3] R. Raja, R. Samidurai, New delay dependent robust asymptotic stability for uncertain stochastic recurrent neural networks with multiple time varying delays, J. Franklin I., 349 (2012), 2108–2123. http://dx.doi.org/10.1016/j.jfranklin.2012.03.007 doi: 10.1016/j.jfranklin.2012.03.007
    [4] Z. Zuo, C. Yang, Y. Wang, A new method for stability analysis of recurrent neural networks with interval time-varying delay, IEEE T. Neural Networ., 21 (2010), 339–344. http://dx.doi.org/10.1109/TNN.2009.2037893 doi: 10.1109/TNN.2009.2037893
    [5] T. Botmart, N. Yotha, P. Niamsup, W. Weera, Hybrid adaptive pinning control for function projective synchronization of delayed neural networks with mixed uncertain couplings, Complexity, 2017 (2017), 4654020. http://dx.doi.org/10.1155/2017/4654020 doi: 10.1155/2017/4654020
    [6] Q. Zhu, S. Senthilraj, R. Raja, R. Samidurai, Stability analysis of uncertain neutral systems with discrete and distributed delays via the delay partition approach, Int. J. Control Autom. Syst., 15 (2017), 2149–2160. http://dx.doi.org/10.1007/s12555-016-0148-x doi: 10.1007/s12555-016-0148-x
    [7] K. Mathiyalagan, R. Anbuvithya, R. Sakthivel, J. Park, P. Prakash, Non-fragile $H_\infty$ synchronization of memristor-based neural networks using passivity theory, Neural Networks, 74 (2016), 85–100. http://dx.doi.org/10.1016/j.neunet.2015.11.005 doi: 10.1016/j.neunet.2015.11.005
    [8] K. Mathiyalagan, J. Park, R. Sakthivel, Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities, Appl. Math. Comput., 259 (2015), 967–979. http://dx.doi.org/10.1016/j.amc.2015.03.022 doi: 10.1016/j.amc.2015.03.022
    [9] G. Sangeetha, K. Mathiyalagan, State estimation results for genetic regulatory networks with Lévy-type noise, Chinese J. Phys., 68 (2020), 191–203. http://dx.doi.org/10.1016/j.cjph.2020.09.007 doi: 10.1016/j.cjph.2020.09.007
    [10] M. Park, O. Kwon, J. Park, S. Lee, E. Cha, On synchronization criterion for coupled discrete-time neural networks with interval time-varying delays, Neurocomputing, 99 (2013), 188–196. http://dx.doi.org/10.1016/j.neucom.2012.04.027 doi: 10.1016/j.neucom.2012.04.027
    [11] S. Senthilraj, R. Raja, Q. Zhu, R. Samidurai, Z. Yao, New delay-interval-dependent stability criteria for static neural networks with time-varying delays, Neurocomputing, 186 (2016), 1–7. http://dx.doi.org/10.1016/j.neucom.2015.12.063 doi: 10.1016/j.neucom.2015.12.063
    [12] A. Abdurahman, H, Jiang, Z. Teng, Function projective synchronization of impulsive neural networks with mixed time-varying delays, Nonlinear Dyn., 78 (2014), 2627–2638. http://dx.doi.org/10.1007/s11071-014-1614-8 doi: 10.1007/s11071-014-1614-8
    [13] L. Cheng, Y. Yang, L. Li, X. Sui, Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control, Physica A, 500 (2018), 273–286. http://dx.doi.org/10.1016/j.physa.2018.02.124 doi: 10.1016/j.physa.2018.02.124
    [14] S. Zheng, Q. Bi, G. Cai, Adaptive projective synchronization in complex networks with time-varying coupling delay, Phys. Lett. A, 373 (2009), 1553–1559. http://dx.doi.org/10.1016/j.physleta.2009.03.001 doi: 10.1016/j.physleta.2009.03.001
    [15] Y. Fan, K. Xing, Y. Wang, L. Wang, Projective synchronization adaptive control for differential chaotic neural networks with mixed time delay, Optik, 127 (2016), 2551–2557. http://dx.doi.org/10.1016/j.ijleo.2015.11.227 doi: 10.1016/j.ijleo.2015.11.227
    [16] J. Yu, C. Hu, H. Jiang, X. Fan, Projective synchronization for fractional neural networks, Neural Networks, 49 (2014), 87–95. http://dx.doi.org/10.1016/j.neunet.2013.10.002 doi: 10.1016/j.neunet.2013.10.002
    [17] S. Song, X. Song, I. Balseva, Mixed $H_{\infty}$ passive projective synchronization for nonidentical uncertain fractional-order neural networks bases on adaptive sliding mode control, Neural process. Lett., 47 (2018), 443–462. http://dx.doi.org/10.1007/s11063-017-9659-6 doi: 10.1007/s11063-017-9659-6
    [18] X. Liu, P. Li, T. Chen, Cluster synchronization for delayed complex networks via periodically intermittent pinning control, Neurocomputing, 162 (2015), 191–200. http://dx.doi.org/10.1016/j.neucom.2015.03.053 doi: 10.1016/j.neucom.2015.03.053
    [19] P. Zhou, S. Cai, S. Jiang, Z. Liu, Exponential cluster synchronization in directed community networks via adaptive nonperiodically intermittent pinning control, Physica A, 492 (2018), 1267–1280. http://dx.doi.org/10.1016/j.physa.2017.11.054 doi: 10.1016/j.physa.2017.11.054
    [20] S. Cai, Q. Jia, Z. Liu, Cluster synchronization for directed heterogeneous dynamical networks via decentralized adaptive intermittent pinning control, Nonlinear Dyn., 82 (2015), 689–702. http://dx.doi.org/10.1007/s11071-015-2187-x doi: 10.1007/s11071-015-2187-x
    [21] T. Wang, T. Li, X. Yang, S. Fei, Cluster synchronization for delayed Lure dynamical networks based on pinning control, Neurocomputing, 83 (2012), 72–82. http://dx.doi.org/10.1016/j.neucom.2011.11.014 doi: 10.1016/j.neucom.2011.11.014
    [22] J. Lu, Y. Huang, S. Ren, General decay synchronization and $H_\infty$ synchronization of multiweighted coupled reaction-diffusion neural networks, Int. J. Control Autom. Syst., 18 (2020), 1250–1263. http://dx.doi.org/10.1007/s12555-019-0380-2 doi: 10.1007/s12555-019-0380-2
    [23] J. Huang, C. Li, T. Huang, Q. Han, Lag quasi synchronization of coupled delayed systems with parameter mismatch by periodically intermittent control, Nonlinear Dyn., 71 (2013), 469–478. http://dx.doi.org/10.1007/s11071-012-0673-y doi: 10.1007/s11071-012-0673-y
    [24] Y. Xiao, W. Xu, X. Li, S. Tang, Adaptive complete synchronization of chaotic dynamical network with unknown and mismatched parameters, Chaos, 17 (2007), 033118. http://dx.doi.org/10.1063/1.2759438 doi: 10.1063/1.2759438
    [25] J. Huang, P. Wei, Lag synchronization in coupled chaotic systems via intermittent control, Procedia Engineering, 15 (2011), 568–572. http://dx.doi.org/10.1016/j.proeng.2011.08.107 doi: 10.1016/j.proeng.2011.08.107
    [26] J. Mei, M. Jiang, W. Xu, B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci., 18 (2013), 2462–2478. http://dx.doi.org/10.1016/j.cnsns.2012.11.009 doi: 10.1016/j.cnsns.2012.11.009
    [27] X. Ma, J. Wang, Pinning outer synchronization between two delayed complex networks with nonlinear coupling via adaptive periodically intermittent control, Neurocomputing, 199 (2016), 197–203. http://dx.doi.org/10.1016/j.neucom.2016.03.022 doi: 10.1016/j.neucom.2016.03.022
    [28] X. Lei, S. Cai, S. Jiang, Z. Liu, Adaptive outer synchronization between two complex delayed dynamical networks via aperiodically intermittent pinning control, Neurocomputing, 222 (2017), 26–35. http://dx.doi.org/10.1016/j.neucom.2016.10.003 doi: 10.1016/j.neucom.2016.10.003
    [29] P. Niamsup, T. Botmart, W. Weera, Modified function projective synchronization of complex dynamical networks with mixed time-varying and asymmetric coupling delays via new hybrid pinning adaptive control, Adv. Differ. Equ., 2017 (2017), 124. http://dx.doi.org/10.1186/s13662-017-1183-5 doi: 10.1186/s13662-017-1183-5
    [30] S. Cai, J. Hao, Z. Liu, Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control, Chaos, 21 (2011), 023112. http://dx.doi.org/10.1063/1.3541797 doi: 10.1063/1.3541797
    [31] J. Xing, H. Jiang, C. Hu, Exponential synchronization for delayed recurrent neural networks via periodically intermittent control, Neurocomputing, 113 (2013), 122–129. http://dx.doi.org/10.1016/j.neucom.2013.01.041 doi: 10.1016/j.neucom.2013.01.041
    [32] K. Craik, Theory of human operators in control systems, Brit. J. Psychol., 38 (1947), 56–61. http://dx.doi.org/10.1111/j.2044-8295.1947.tb01141.x doi: 10.1111/j.2044-8295.1947.tb01141.x
    [33] M. Vince, The intermittency of control movements and the psychological refractory period, Brit. J. Psychol., 38 (1948), 149–157. http://dx.doi.org/10.1111/j.2044-8295.1948.tb01150.x doi: 10.1111/j.2044-8295.1948.tb01150.x
    [34] F. Navas, L. Stark, Sampling or intermittency in hand control system dynamics, Biophys. J., 8 (1968), 252–302. http://dx.doi.org/10.1016/S0006-3495(68)86488-4 doi: 10.1016/S0006-3495(68)86488-4
    [35] C. Deissenberg, Optimal control of linear econometric models with intermittent controls, Economics of Planning, 16 (1980), 49–56. http://dx.doi.org/10.1007/BF00351465 doi: 10.1007/BF00351465
    [36] E. Ronco, T. Arsan, P. Gawthrop, Open-loop intermittent feedback control: practical continuous-time GPC, IEE Proceedings-Control Theory and Applications, 146 (1999), 426–434. http://dx.doi.org/10.1049/ip-cta:19990504 doi: 10.1049/ip-cta:19990504
    [37] M. Zochowski, Intermittent dynamical control, Physica D, 145 (2000), 181–190. http://dx.doi.org/10.1016/S0167-2789(00)00112-3 doi: 10.1016/S0167-2789(00)00112-3
    [38] C. Li, G. Feng, X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE T. Circuits-II, 54 (2007), 1019–1023. http://dx.doi.org/10.1109/TCSII.2007.903205 doi: 10.1109/TCSII.2007.903205
    [39] Q. Song, T. Huang, Stabilization and synchronization of chaotic systems with mixed time-varying delays via intermittent control with non-fixed both control period and control width, Neurocomputing, 154 (2015), 61–69. http://dx.doi.org/10.1016/j.neucom.2014.12.019 doi: 10.1016/j.neucom.2014.12.019
    [40] Y. Asai, Y. Tasaka, K. Nomura, T. Nomura, M. Casadio, P. Morasso, A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control, PLoS One, 4 (2009), 6169. http://dx.doi.org/10.1371/journal.pone.0006169 doi: 10.1371/journal.pone.0006169
    [41] Z. Zhang, Y. He, M. Wu, L. Ding, Exponential stabilization of systems with time-varying delay by periodically intermittent control, Proceedings of 35th Chinese Control Conference, 2016, 1523–1528. http://dx.doi.org/10.1109/ChiCC.2016.7553306
    [42] R. Bye, P. Neilson, The BUMP model of response planning: variable horizon predictive control accounts for the speed accuracy tradeoffs and velocity profiles of aimed movement, Hum. Movement Sci., 27 (2008), 771–798. http://dx.doi.org/10.1016/j.humov.2008.04.003 doi: 10.1016/j.humov.2008.04.003
    [43] P. Gawthrop, I. Loram, M. Lakie, H. Gollee, Intermittent control: a computational theory of human control, Biol. Cybern., 104 (2011), 31–51. http://dx.doi.org/10.1007/s00422-010-0416-4 doi: 10.1007/s00422-010-0416-4
    [44] T. Botmart, P. Niamsup, Exponential synchronization of complex dynamical network with mixed time-varying and hybrid coupling delays via intermittent control, Adv. Differ. Equ., 2014 (2014), 116. http://dx.doi.org/10.1186/1687-1847-2014-116 doi: 10.1186/1687-1847-2014-116
    [45] J. Huang, C. Li, W. Zhang, P. Wei, Projective synchronization of a hyperchaotic system via periodically intermittent control, Chinese Phys. B, 21 (2012), 090508. http://dx.doi.org/10.1088/1674-1056/21/9/090508 doi: 10.1088/1674-1056/21/9/090508
    [46] J. Gao, J. Cao, Aperiodically intermittent synchronization for switching complex networks dependent on topology structure, Adv. Differ. Equ., 2017 (2017), 244. http://dx.doi.org/10.1186/s13662-017-1261-8 doi: 10.1186/s13662-017-1261-8
    [47] X. Wu, J. Feng, Z. Nie, Pinning complex-valued complex network via aperiodically intermittent control, Neurocomputing, 305 (2018), 70–77. http://dx.doi.org/10.1016/j.neucom.2018.03.055 doi: 10.1016/j.neucom.2018.03.055
    [48] L. Pecora, T. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821.
    [49] T. Botmart, Exponential synchronization of master-slave neural networks with mixed time-varying delays via hybrid intermittent feedback control, IJPAM, 96 (2014), 59–78. http://dx.doi.org/10.12732/ijpam.v96i1.6 doi: 10.12732/ijpam.v96i1.6
    [50] Z. Zhang, Y. He, M. Wu, Q. Wang, Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach, Appl. Math. Comput., 314 (2017), 121–132. http://dx.doi.org/10.1016/j.amc.2017.07.019 doi: 10.1016/j.amc.2017.07.019
    [51] T. Botmart, P. Niamsup, X. Liu, Synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control, Commun. Nonlinear Sci., 17 (2012), 1894–1907. http://dx.doi.org/10.1016/j.cnsns.2011.07.038 doi: 10.1016/j.cnsns.2011.07.038
    [52] Q. Song, J. Cao, Pinning synchronization of linearly coupled delays neural networks, Math. Comput. Simulat., 86 (2012), 39–51. http://dx.doi.org/10.1016/j.matcom.2011.07.008 doi: 10.1016/j.matcom.2011.07.008
    [53] C. Zheng, J. Cao, Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control, Neurocomputing, 141 (2014), 153–159. http://dx.doi.org/10.1016/j.neucom.2014.03.042 doi: 10.1016/j.neucom.2014.03.042
    [54] K. Gu, V. Kharitonov, J. Chen, Stability of time delay systems, Boston: Birkhäuser, 2003. http://dx.doi.org/10.1007/978-1-4612-0039-0
    [55] P. Park, J. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. http://dx.doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [56] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Philadephia: SIAM, 1994. http://dx.doi.org/10.1137/1.9781611970777
    [57] C. Zhang, Y. He, M. Wu, Exponential synchronization of neural networks with time-varying mixed delays and sampled data, Neurocomputing, 74 (2010), 265–273. http://dx.doi.org/10.1016/j.neucom.2010.03.020 doi: 10.1016/j.neucom.2010.03.020
    [58] F. Yang, J. Mei, Z. Wu, Finite-time synchronization of neural networks with discrete and distributed delays via periodically intermittent memory feedback control, IET Control Theory A., 10 (2016), 1630–1640. http://dx.doi.org/10.1049/iet-cta.2015.1326 doi: 10.1049/iet-cta.2015.1326
    [59] Z. Wu, P. Shi, H. Su, J. Chu, Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling, IEEE T. Neur. Net. Lear., 23 (2012), 1368–1376. http://dx.doi.org/10.1109/TNNLS.2012.2202687 doi: 10.1109/TNNLS.2012.2202687
    [60] D. Xu, J. Pang, H. Su, Bipartite synchronization of signed networks via aperiodically intermittent control based on discrete-time state observations, Neural Networks, 144 (2021), 307–319. http://dx.doi.org/10.1016/j.neunet.2021.08.035 doi: 10.1016/j.neunet.2021.08.035
    [61] Y. Gao, Y. Li, Bipartite leader-following synchronization of fractional-order delayed multilayer signed networks by adaptive and impulsive controllers, Appl. Math. Comput., 430 (2022), 127243. http://dx.doi.org/10.1016/j.amc.2022.127243 doi: 10.1016/j.amc.2022.127243
    [62] L. Duan, M. Shi, C. Huang, M. Fang, New results on finite-time synchronization of delayed fuzzy neural networks with inertial effects, Int. J. Fuzzy Syst., 24 (2022), 676–685. http://dx.doi.org/10.1007/s40815-021-01171-1 doi: 10.1007/s40815-021-01171-1
    [63] L. Duan, M. Shi, L. Huang, New results on finite-/fixed-time synchronization of delayed diffusive fuzzy HNNs with discontinuous activations, Fuzzy Sets Syst., 416 (2021), 141–151. http://dx.doi.org/10.1016/j.fss.2020.04.016 doi: 10.1016/j.fss.2020.04.016
    [64] Q. Wang, L. Duan, H. Wei, L. Wang, Finite-time anti-synchronisation of delayed Hopfield neural networks with discontinuous activations, Int. J. Control, in press. http://dx.doi.org/10.1080/00207179.2021.1912396
    [65] Q. Fu, J. Cai, S. Zhong, Robust stabilization of memristor-based coupled neural networks with time-varying delays, Int. J. Control Autom. Syst., 17 (2019), 2666–2676. http://dx.doi.org/10.1007/s12555-018-0936-6 doi: 10.1007/s12555-018-0936-6
    [66] Q. Fu, S. Zhong, W. Jiang, W. Xie, Projective synchronization of fuzzy memristive neural networks with pinning impulsive control, J. Franklin I., 357 (2020), 10387–10409. http://dx.doi.org/10.1016/j.jfranklin.2020.08.015 doi: 10.1016/j.jfranklin.2020.08.015
    [67] H. Bao, J. Cao, J. Kurths, State estimation of fractional-order delayed memristive neural networks, Nonlinear Dyn., 94 (2018), 1215–1225. http://dx.doi.org/10.1007/s11071-018-4419-3 doi: 10.1007/s11071-018-4419-3
    [68] S. Hu, Y. Liu, Z. Liu, T. Chen, Q. Yu, L. Deng, et al., Synaptic long-term potentiation realized in pavlov's dog model based on a niox-based memristor, J. Appl. Phys., 116 (2014), 214502. http://dx.doi.org/10.1063/1.4902515 doi: 10.1063/1.4902515
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1461) PDF downloads(98) Cited by(1)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog