Research article

Finite-time decentralized event-triggered feedback control for generalized neural networks with mixed interval time-varying delays and cyber-attacks

  • Received: 07 May 2023 Revised: 09 June 2023 Accepted: 26 June 2023 Published: 13 July 2023
  • MSC : 34D20, 37C75, 39A30

  • This article investigates the finite-time decentralized event-triggered feedback control problem for generalized neural networks (GNNs) with mixed interval time-varying delays and cyber-attacks. A decentralized event-triggered method reduces the network transmission load and decides whether sensor measurements should be sent out. The cyber-attacks that occur at random are described employing Bernoulli distributed variables. By the Lyapunov-Krasovskii stability theory, we apply an integral inequality with an exponential function to estimate the derivative of the Lyapunov-Krasovskii functionals (LKFs). We present new sufficient conditions in the form of linear matrix inequalities. The main objective of this research is to investigate the stochastic finite-time boundedness of GNNs with mixed interval time-varying delays and cyber-attacks by providing a decentralized event-triggered method and feedback controller. Finally, a numerical example is constructed to demonstrate the effectiveness and advantages of the provided control scheme.

    Citation: Chantapish Zamart, Thongchai Botmart, Wajaree Weera, Prem Junsawang. Finite-time decentralized event-triggered feedback control for generalized neural networks with mixed interval time-varying delays and cyber-attacks[J]. AIMS Mathematics, 2023, 8(9): 22274-22300. doi: 10.3934/math.20231136

    Related Papers:

  • This article investigates the finite-time decentralized event-triggered feedback control problem for generalized neural networks (GNNs) with mixed interval time-varying delays and cyber-attacks. A decentralized event-triggered method reduces the network transmission load and decides whether sensor measurements should be sent out. The cyber-attacks that occur at random are described employing Bernoulli distributed variables. By the Lyapunov-Krasovskii stability theory, we apply an integral inequality with an exponential function to estimate the derivative of the Lyapunov-Krasovskii functionals (LKFs). We present new sufficient conditions in the form of linear matrix inequalities. The main objective of this research is to investigate the stochastic finite-time boundedness of GNNs with mixed interval time-varying delays and cyber-attacks by providing a decentralized event-triggered method and feedback controller. Finally, a numerical example is constructed to demonstrate the effectiveness and advantages of the provided control scheme.



    加载中


    [1] L. O. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273–1290. https://doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [2] A. Cochocki, R. Unbehauen, Neural networks for optimization and signal processing, Chichester: Wiley, 1993. https://doi.org/10.1002/acs.4480080309
    [3] G. Joya, M. A. Atencia, F. Sandoval, Hopfield neural networks for optimization: Study of the different dynamics, Neurocomputing, 43 (2002), 219–237. https://doi.org/10.1016/S0925-2312(01)00337-X doi: 10.1016/S0925-2312(01)00337-X
    [4] W. J. Li, T. Lee, Hopfield neural networks for affine invariant matching, IEEE Trans. Neural Netw., 12 (2001), 1400–1410. https://doi.org/10.1109/72.963776 doi: 10.1109/72.963776
    [5] M. S. Ali, S. Saravanan, Q. Zhu, Non-fragile finite-time $H_\infty$ state estimation of neural networks with distributed time-varying delay, J. Franklin. Inst., 354 (2017), 7566–7584. https://doi.org/10.1016/j.jfranklin.2017.09.002 doi: 10.1016/j.jfranklin.2017.09.002
    [6] O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha, New and improved results on stability of static neural networks with interval time-varying delays, Appl. Math. Comput., 239 (2014), 346–357. https://doi.org/10.1016/j.amc.2014.04.089 doi: 10.1016/j.amc.2014.04.089
    [7] U. K. Raja, R. Raja, R. Samidurai, A. Leelamani, Exponential stability for stochastic delayed recurrent neural networks with mixed time-varying delays and impulses: The continuous-time case, Phys. Scr., 87 (2013), 055802. https://doi.org/10.1088/0031-8949/87/05/055802 doi: 10.1088/0031-8949/87/05/055802
    [8] S. Rajavel, R. Samidurai, J. Cao, A. Alsaedi, B. Ahmad, Finite-time non-fragile passivity control for neural networks with time-varying delay, Appl. Math. Comput., 297 (2017), 145–158. https://doi.org/10.1016/j.amc.2016.10.038 doi: 10.1016/j.amc.2016.10.038
    [9] S. Saravanan, M. S. Ali, R. Saravanakumar, Finite-time non-fragile dissipative stabilization of delayed neural networks, Neural Process. Lett., 49 (2019), 573–591. https://doi.org/10.1007/s11063-018-9844-2 doi: 10.1007/s11063-018-9844-2
    [10] S. Senthilraj, R. Raja, Q. Zhu, R. Semidurai, New delay-interval-dependent stability criteria for static neural networks with time-varying delays, Neurocomputing, 186 (2016), 1–7. https://doi.org/10.1016/j.neucom.2015.12.063 doi: 10.1016/j.neucom.2015.12.063
    [11] R. Vadivel, P. Hammachukiattikul, G. Rajchakit, M. S. Ali, B. Unyong, Finite-time event-triggered approach for recurrent neural networks with leakage term and its application, Math. Comput. Simul., 182 (2021), 765–790. https://doi.org/10.1016/j.matcom.2020.12.001 doi: 10.1016/j.matcom.2020.12.001
    [12] C. Zamart, T. Botmart, W. Weera, S. Charoensin, New delay-dependent conditions for finite-time extended dissipativity based non-fragile feedback control for neural networks with mixed interval time-varying delays, Math. Comput. Simul., 201 (2022), 684–713. https://doi.org/10.1016/j.matcom.2021.07.007 doi: 10.1016/j.matcom.2021.07.007
    [13] X. M. Zhang, Q. L. Han, Global asymptotic stability for a class of generalized neural networks with interval time-varying delays, IEEE Trans. Neural Netw., 22 (2011), 1180–1192. https://doi.org/10.1109/TNN.2011.2147331 doi: 10.1109/TNN.2011.2147331
    [14] Z. Feng, H. Shao, L. Shao, Further improved stability results for generalized neural networks with time-varying delays, Neurocomputing, 367 (2019), 308–318. https://doi.org/10.1016/j.neucom.2019.07.019 doi: 10.1016/j.neucom.2019.07.019
    [15] R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals, Inf. Sci., 424 (2018), 175–203. https://doi.org/10.1016/j.ins.2017.10.007 doi: 10.1016/j.ins.2017.10.007
    [16] R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Non-fragile extended dissipativity control design for generalized neural networks with interval time-delay signals, Asian J. Control., 21 (2019), 559–580. https://doi.org/10.1002/asjc.1752 doi: 10.1002/asjc.1752
    [17] P. Prasertsang, T. Botmart, Improvement of finite-time stability for delayed neural networks via a new Lyapunov-Krasovskii functional, AIMS Math., 6 (2020), 998–1023. https://doi.org/10.3934/math.2021060 doi: 10.3934/math.2021060
    [18] L. Sun, Y. Tang, W. Wang, S. Shen, Stability analysis of time-varying delay neural networks based on new integral inequalities, J. Franklin. Inst., 357 (2020), 10828–10843. https://doi.org/10.1016/j.jfranklin.2020.08.017 doi: 10.1016/j.jfranklin.2020.08.017
    [19] D. Yue, E. Tian, Q. L. Han, A delay system method for designing event-triggered controllers of networked control systems, IEEE Trans. Autom. Contr., 58 (2012), 475–481. https://doi.org/10.1109/TAC.2012.2206694 doi: 10.1109/TAC.2012.2206694
    [20] Y. Liu, J. H. Park, B. Z. Guo, F. Fang, F. Zhou, Event‐triggered dissipative synchronization for Markovian jump neural networks with general transition probabilities, Int. J. Robust Nonlinear Control, 28 (2018), 3893–3908. https://doi.org/10.1002/rnc.4110 doi: 10.1002/rnc.4110
    [21] L. Zha, J. A. Fang, J. Liu, E. Tian, Event-triggered non-fragile state estimation for delayed neural networks with randomly occurring sensor nonlinearity, Neurocomputing, 273 (2018), 1–8. https://doi.org/10.1016/j.neucom.2017.08.011 doi: 10.1016/j.neucom.2017.08.011
    [22] L. Zha, E. Tian, X. Xie, Z. Gu, J. Cao, Decentralized event-triggered $H_\infty$ control for neural networks subject to cyber-attacks, Inf. Sci., 457 (2021), 141–155. https://doi.org/10.1016/j.ins.2018.04.018 doi: 10.1016/j.ins.2018.04.018
    [23] M. S. Ali, R. Vadivel, O. M. Kwon, K. Murugan, Event triggered finite time $H_\infty$ boundedness of uncertain Markov jump neural networks with distributed time varying delays, Neural Process. Lett., 49 (2019), 1649–1680. https://doi.org/10.1007/s11063-018-9895-4 doi: 10.1007/s11063-018-9895-4
    [24] J. Qiu, K. Sun, T. Wang, H. Gao, Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance, IEEE Trans. Fuzzy Syst., 27 (2019), 2152–2162. https://doi.org/10.1109/TFUZZ.2019.2895560 doi: 10.1109/TFUZZ.2019.2895560
    [25] Z. Feng, H. Shao, L. Shao, Further results on event-triggered $H_\infty$ networked control for neural networks with stochastic cyber-attacks, Appl. Math. Comput., 386 (2020), 125431. https://doi.org/10.1016/j.amc.2020.125431 doi: 10.1016/j.amc.2020.125431
    [26] J. Wu, C. Peng, J. Zhang, B. L. Zhang, Event-triggered finite-time $H_\infty$ filtering for networked systems under deception attacks, J. Franklin. Inst., 357 (2020), 3792–3808. https://doi.org/10.1016/j.jfranklin.2019.09.002 doi: 10.1016/j.jfranklin.2019.09.002
    [27] A. Farraj, E. Hammad, D. Kundur, On the impact of cyber attacks on data integrity in storage-based transient stability control, IEEE Trans. Industr. Inform., 13 (2017), 3322–3333. https://doi.org/10.1109/TII.2017.2720679 doi: 10.1109/TII.2017.2720679
    [28] C. Kwon, I. Hwang, Reachability analysis for safety assurance of cyber-physical systems against cyber attacks, IEEE Trans. Automat., 63 (2017), 2272–2279. https://doi.org/10.1109/TAC.2017.2761762 doi: 10.1109/TAC.2017.2761762
    [29] A. Y. Lu, G. H. Yang, Event-triggered secure observer-based control for cyber-physical systems under adversarial attacks, Inf. Sci., 420 (2017), 96–109. https://doi.org/10.1016/j.ins.2017.08.057 doi: 10.1016/j.ins.2017.08.057
    [30] J. Liu, T. Yin, X. Xie, E. Tian, S. Fei, Event-triggered state estimation for T-S fuzzy neural networks with stochastic cyber-attacks, Int. J. Fuzzy Syst., 21 (2019), 532–544. https://doi.org/10.1007/s40815-018-0590-4 doi: 10.1007/s40815-018-0590-4
    [31] P. Dorato, Short-time stability linear time-varying systems, Polytechnic Institute of Brooklyn, 1961.
    [32] F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37 (2001), 1459–1463. https://doi.org/10.1016/S0005-1098(01)00087-5 doi: 10.1016/S0005-1098(01)00087-5
    [33] A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, J. Cao, G. Rajchakit, Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses, Neural Process. Lett., 51 (2020), 1485–1526. https://doi.org/10.1007/s11063-019-10154-1 doi: 10.1007/s11063-019-10154-1
    [34] S. Kanakalakshmi, R. Sakthivel, S. A. Karthick, A. Leelamani, A. Parivallal, Finite-time decentralized event-triggering non-fragile control for fuzzy neural networks with cyber-attack and energy constraints, Eur. J. Control, 57 (2021), 135–146. https://doi.org/10.1016/j.ejcon.2020.05.001 doi: 10.1016/j.ejcon.2020.05.001
    [35] C. Peng, E. Tian, J. Zhang, D. Du, Decentralized event-triggering communication scheme for large-scale systems under network environments, Inf. Sci., 380 (2017), 132–144. https://doi.org/10.1016/j.ins.2015.06.036 doi: 10.1016/j.ins.2015.06.036
    [36] K. Gu, J. Chen, V. L. Kharitonov, Stability of time-delay systems, Boston: Birkhauser, 2003. https://doi.org/10.1007/978-1-4612-0039-0
    [37] C. Zamart, T. Botmart, Further improvement of finite-time boundedness based nonfragile state feedback control for generalized neural networks with mixed interval time-varying delays via a new integral inequality, J. Inequal. Appl., 61 (2023), 61. https://doi.org/10.1186/s13660-023-02973-7 doi: 10.1186/s13660-023-02973-7
    [38] Q. L. Han, Y. Liu, F. Yang, Optimal communication network-based $H_\infty$ quantized control with packet dropouts for a class of discrete-time neural networks with distributed time delay, IEEE Trans. Neural Netw. Learn. Syst., 27 (2015), 426–434. https://doi.org/10.1109/TNNLS.2015.2411290 doi: 10.1109/TNNLS.2015.2411290
    [39] S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM, 1994. https://doi.org/10.1137/1.9781611970777
    [40] N. Yotha, T. Botmart, K. Mukdasai, W. Weera, Improved delay-dependent approach to passivity analysis for uncertain neural networks with discrete interval and distributed time-varying delays, Vietnam J. Math., 45 (2017), 721–736. https://doi.org/10.1007/s10013-017-0243-1 doi: 10.1007/s10013-017-0243-1
    [41] Y. Li, J. Zhang, J. Lu, J. Lou, Finite-time synchronization of complex networks with partial communication channels failure, Inf. Sci., 634 (2023), 539–549. https://doi.org/10.1016/j.ins.2023.03.077 doi: 10.1016/j.ins.2023.03.077
    [42] C. Aouiti, P. Coirault, F. Miaadi, E. Moulay, Finite time boundedness of neutral high-order Hopfield neural networks with time delay in the leakage term and mixed time delays, Neurocomputing, 260 (2017), 378–392. https://doi.org/10.1016/j.neucom.2017.04.048 doi: 10.1016/j.neucom.2017.04.048
    [43] R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Delay-dependent stability criteria for neutral-type neural networks with interval time-varying delay signals under the effects of leakage delay, Adv. Differ. Equ., 2018 (2018), 53. https://doi.org/10.1186/s13662-018-1509-y doi: 10.1186/s13662-018-1509-y
    [44] T. Peng, J. Zhong, Z. Tu, J. Lu, J. Lou, Finite-time synchronization of quaternion-valued neural networks with delays: A switching control method without decomposition, Neural Netw., 148 (2022), 37–47. https://doi.org/10.1016/j.neunet.2021.12.012 doi: 10.1016/j.neunet.2021.12.012
    [45] Z. Deng, C. Wang, H. Lin, Y. Sun, A Memristive spiking neural network circuit with selective supervised attention algorithm, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2022 (2022), 1–14. https://doi.org/10.1109/TCAD.2022.3228896 doi: 10.1109/TCAD.2022.3228896
    [46] C. Zhou, C. Wang, Y. Sun, W. Yao, H. Lin, Cluster output synchronization for memristive neural networks, Inf. Sci., 589 (2022), 459–477. https://doi.org/10.1016/j.ins.2021.12.084 doi: 10.1016/j.ins.2021.12.084
    [47] Z. Chao, C. Wang, W. Yao, Quasi-synchronization of stochastic memristive neural networks subject to deception attacks, Nonlinear Dyn., 111 (2023), 2443–2462. https://doi.org/10.1007/s11071-022-07925-2 doi: 10.1007/s11071-022-07925-2
    [48] Y. Ni, Z. Wang, Y. Fan, J. Lu, H. Shen, A switching memory-based event-trigger scheme for synchronization of Lur'e systems with actuator saturation: A hybrid Lyapunov method, IEEE Trans. Neural Netw. Learn. Syst., 2023 (2023), 1–12. https://doi.org/10.1109/TNNLS.2023.3273917 doi: 10.1109/TNNLS.2023.3273917
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(962) PDF downloads(67) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog