In this paper, we consider a two-sided jumps risk model with proportional investments and random observation periods. The downward jumps represent the claim while the upward jumps represent the random returns. Suppose an insurance company invests all of their surplus in risk-free and risky investments in proportion. In real life, corporate boards regularly review their accounts rather than continuously monitoring them. Therefore, we assume that insurers regularly observe surplus levels to determine whether they will ruin and that the random observation periods are exponentially distributed. Our goal is to study the Gerber-Shiu function (i.e., the expected discounted penalty function) of the two-sided jumps risk model under random observation. First, we derive the integral differential equations (IDEs) satisfied by the Gerber-Shiu function. Due to the difficulty in obtaining explicit solutions for the IDEs, we utilize the sinc approximation method to obtain the approximate solution. Second, we analyze the error between the approximate and explicit solutions and find the upper bound of the error. Finally, we discuss examples of sensitivity analysis.
Citation: Chunwei Wang, Jiaen Xu, Naidan Deng, Shujing Wang. Two-sided jumps risk model with proportional investment and random observation periods[J]. AIMS Mathematics, 2023, 8(9): 22301-22318. doi: 10.3934/math.20231137
In this paper, we consider a two-sided jumps risk model with proportional investments and random observation periods. The downward jumps represent the claim while the upward jumps represent the random returns. Suppose an insurance company invests all of their surplus in risk-free and risky investments in proportion. In real life, corporate boards regularly review their accounts rather than continuously monitoring them. Therefore, we assume that insurers regularly observe surplus levels to determine whether they will ruin and that the random observation periods are exponentially distributed. Our goal is to study the Gerber-Shiu function (i.e., the expected discounted penalty function) of the two-sided jumps risk model under random observation. First, we derive the integral differential equations (IDEs) satisfied by the Gerber-Shiu function. Due to the difficulty in obtaining explicit solutions for the IDEs, we utilize the sinc approximation method to obtain the approximate solution. Second, we analyze the error between the approximate and explicit solutions and find the upper bound of the error. Finally, we discuss examples of sensitivity analysis.
[1] | R. J. Boucherie, O. J. Boxma, K. Sigman, A note on negative customers, GI/G/1 workload, and risk processes, Insur. Math. Econ., 11 (1997), 305–311. https://doi.org/10.1017/S0269964800004848 doi: 10.1017/S0269964800004848 |
[2] | L. Zhang, The expected discounted penalty function in the generalized Erlang (n) risk model with two-sided jumps and a constant dividend barrier, B. Iran. Math. Soc., 47 (2021), 569–583. https://doi.org/10.1007/s41980-020-00399-1 doi: 10.1007/s41980-020-00399-1 |
[3] | E. C. Cheung, H. Liu, G. E. Willmot, Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps, Appl. Math. Comput., 331 (2018), 358–377. https://doi.org/10.1016/j.amc.2018.03.037 doi: 10.1016/j.amc.2018.03.037 |
[4] | H. Dong, Z. Liu, The ruin problem in a renewal risk model with two-sided jumps, Math. Comput. Model., 57 (2013), 800–811. https://doi.org/10.1016/j.mcm.2012.09.005 doi: 10.1016/j.mcm.2012.09.005 |
[5] | J. Ivanovs, On scale functions for Lévy processes with negative phase-type jumps, Queueing Syst., 98 (2021), 3–19. https://doi.org/10.1007/s11134-021-09696-w doi: 10.1007/s11134-021-09696-w |
[6] | E. M. Martín-Gonz$\acute{\rm a }$lez, A. Murillo-Salas, H. Pantí, Gerber-Shiu function for a class of Markov-modulated Lévy risk processes with two-sided jumps, Methodol. Comput. Appl. Probab., 24 (2022), 2779–2800. https://doi.org/10.1007/s11009-022-09954-1 doi: 10.1007/s11009-022-09954-1 |
[7] | Z. Palmowski, E. Vatamidou, Phase-type approximations perturbed by a heavy-tailed component for the Gerber-Shiu function of risk processes with two-sided jumps, Stoch. Models, 36 (2020), 337–363. https://doi.org/10.1080/15326349.2020.1717344 doi: 10.1080/15326349.2020.1717344 |
[8] | L. Zhang, The Erlang(n) risk model with two-sided jumps and a constant dividend barrier, Commun. Stat.-Theor. M., 50 (2021), 5899–5917. https://doi.org/10.1080/03610926.2020.1737712 doi: 10.1080/03610926.2020.1737712 |
[9] | H. Albrecher, E. C. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function, Scand. Actuar. J., 2013 (2013), 424–452. https://doi.org/10.1080/03461238.2011.624686 doi: 10.1080/03461238.2011.624686 |
[10] | H. Albrecher, E. C. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends, Astin Bull., 41 (2011), 645–672. https://doi.org/10.2143/AST.41.2.2136991 doi: 10.2143/AST.41.2.2136991 |
[11] | W. Zhuo, H. Yang, X. Chen, Expected discounted penalty function for a phase-type risk model with stochastic return on investment and random observation periods, Kybernetes, 47 (2018), 1420–1434. https://doi.org/10.1108/K-05-2017-0153 doi: 10.1108/K-05-2017-0153 |
[12] | E. C. Cheung, Z. Zhang, Periodic threshold-type dividend strategy in the compound Poisson risk model, Scand. Actuar. J., 2019 (2019), 1–31. https://doi.org/10.1080/03461238.2018.1481454 doi: 10.1080/03461238.2018.1481454 |
[13] | X. Peng, W. Su, Z. Zhang, On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy, J. Ind. Manag. Optim., 16 (2020), 1967–1986. https://doi.org/10.3934/jimo.2019038 doi: 10.3934/jimo.2019038 |
[14] | Z. Zhang, E. C. Cheung, H. Yang, On the compound Poisson risk model with periodic capital injections, Astin Bull., 48 (2018), 435–477. https://doi.org/10.1017/asb.2017.22 doi: 10.1017/asb.2017.22 |
[15] | H. U. Gerber, E. S. Shiu, On the time value of ruin, North Am. Actuar. J., 2 (1998), 48–72. https://doi.org/10.1080/10920277.1998.10595671 doi: 10.1080/10920277.1998.10595671 |
[16] | K. Hu, J. Li, J. Zhou, On the dual risk model with Parisian implementation delays under a mixed dividend strategy, Probab. Engrg. Inform. Sci., 37 (2023), 442–461. https://doi.org/10.1017/S0269964822000481 doi: 10.1017/S0269964822000481 |
[17] | Y. Yang, J. Xie, Z. Zhang, Nonparametric estimation of some dividend problems in the perturbed compound Poisson model, Probab. Engrg. Inform. Sci., 37 (2023), 418–441. https://doi.org/10.1017/s0269964822000298 doi: 10.1017/s0269964822000298 |
[18] | K. C. Yuen, G. Wang, Some ruin problems for a risk process with stochastic interest, N. Am. Actuar. J., 9 (2005), 129–142. https://doi.org/10.1080/10920277.2005.10596215 doi: 10.1080/10920277.2005.10596215 |
[19] | X. Chen, H. Ou, A compound Poisson risk model with proportional investment, J. Comput. Appl. Math., 242 (2013), 248–260. https://doi.org/10.1016/j.cam.2012.10.027 doi: 10.1016/j.cam.2012.10.027 |
[20] | L. Bo, R. Song, D. Tang, Y. Wang, X. Yang, Lévy risk model with two-sided jumps and a barrier dividend strategy, Insur. Math. Econ., 50 (2012), 280–291. https://doi.org/10.1016/j.insmatheco.2011.12.002 doi: 10.1016/j.insmatheco.2011.12.002 |
[21] | D. Gao, K. P. Sendova, Applications of the classical compound Poisson model with claim sizes following a compound distribution, Probab. Engrg. Inform. Sci., 37 (2023), 357–386. https://doi.org/10.1017/S0269964822000195 doi: 10.1017/S0269964822000195 |
[22] | E. C. Cheung, H. Liu, Joint moments of discounted claims and discounted perturbation until ruin in the compound Poisson risk model with diffusion, Probab. Eng. Inform. Sci., 37 (2022), 387–417. https://doi.org/10.1017/S0269964822000080 doi: 10.1017/S0269964822000080 |
[23] | C. Wang, N. Deng, S. Shen, Numerical method for a perturbed risk model with proportional investment, Mathematics, 11 (2023), 43. https://doi.org/10.3390/math11010043 doi: 10.3390/math11010043 |
[24] | F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, New York: Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4612-2706-9 |
[25] | F. Stenger, Handbook of Sinc Numerical Methods, Boca Raton: CRC Press, 2011. https://doi.org/10.1201/b10375 |
[26] | Y. Liu, X. Chen, W. Zhuo, Dividends under threshold dividend strategy with randomized observation periods and capital-exchange agreement, J. Comput. Appl. Math., 366 (2020), 112426. https://doi.org/10.1016/j.cam.2019.112426 doi: 10.1016/j.cam.2019.112426 |
[27] | Y. Wu, X. Wu, Linearized and rational approximation method for solving non-linear burgers' equation, Int. J. Numer. Meth. Fluids, 45 (2004), 509–525. https://doi.org/10.1002/fld.714 doi: 10.1002/fld.714 |
[28] | F. Stenger, Summary of sinc numerical methods, J. Comput. Appl. Math., 121 (2000), 379–420. https://doi.org/10.1016/s0377-0427(00)00348-4 doi: 10.1016/s0377-0427(00)00348-4 |
[29] | F. Dufresne, H. U. Gerber, The surpluses immediately before and at ruin, and the amount of the claim causing ruin, Insurance Math. Econom., 7 (1988), 193–199. https://doi.org/10.1016/0167-6687(88)90076-5 doi: 10.1016/0167-6687(88)90076-5 |
[30] | D. A. Zuanetti, C. A. Diniz, J. G. Leite, A lognormal model for insurance claims data, REVSTAT-Stat. J., 4 (2006), 131–142. https://doi.org/10.57805/revstat.v4i2.31 doi: 10.57805/revstat.v4i2.31 |
[31] | X. Xing, W. Zhang, Y. Jiang, On the time to ruin and the deficit at ruin in a risk model with double-sided jumps, Statist. Probab. Lett., 78 (2004), 82692–2699. https://doi.org/10.1016/j.spl.2008.03.034 doi: 10.1016/j.spl.2008.03.034 |
[32] | Z. Zhang, H. Yang, A generalized penalty function in the Sparre-Andersen risk model with two-sided jumps, Statist. Probab. Lett., 80 (2010), 597–607. https://doi.org/10.1016/j.spl.2009.12.016 doi: 10.1016/j.spl.2009.12.016 |
[33] | J. Xu, C. Wang, N. Deng, S. Wang, Numerical method for a risk model with two-sided jumps and proportional investment, Mathematics, 11 (2023), 1584. https://doi.org/10.3390/math11071584 doi: 10.3390/math11071584 |
[34] | H. Albrecher, H. U. Gerber, H. Yang, A direct approach to the discounted penalty function, North Am. Actuar. J., 14 (2010), 420–434. https://doi.org/10.1080/10920277.2010.10597599 doi: 10.1080/10920277.2010.10597599 |
[35] | E. C. Cheung, On a class of stochastic models with two-sided jumps, Queueing Syst., 69 (2011), 1–28. https://doi.org/10.1007/s11134-011-9228-z doi: 10.1007/s11134-011-9228-z |
[36] | J. J. Rebello, K. Thampi, Some ruin theory components of two sided jump problems under renewal risk process, Int. Math. Forum, 12 (2017), 311–325. https://doi.org/10.12988/imf.2017.611147 doi: 10.12988/imf.2017.611147 |