Research article Special Issues

Dividend problem of an investment risk model under random observation

  • These authors contributed equally to this work.
  • Received: 30 April 2024 Revised: 29 July 2024 Accepted: 08 August 2024 Published: 13 August 2024
  • MSC : 65C30, 91B05, 91G05

  • We mainly studied the dividend payout with a two-sided jumps risk model under random observation. The two-sided jumps in the model represent random claims and random returns. First, we obtained the integral differential equation of the expected dividend under the boundary conditions. Because the equations cannot be solved directly under normal circumstances, we chose the sinc numerical method here to approximate the solution of the equations. Then the error analysis of the approximate solution was carried out to illustrate the rationality of the numerical method. Finally, some concrete numerical examples were given.

    Citation: Chunwei Wang, Shaohua Li, Jiaen Xu, Shujing Wang. Dividend problem of an investment risk model under random observation[J]. AIMS Mathematics, 2024, 9(9): 24039-24057. doi: 10.3934/math.20241169

    Related Papers:

  • We mainly studied the dividend payout with a two-sided jumps risk model under random observation. The two-sided jumps in the model represent random claims and random returns. First, we obtained the integral differential equation of the expected dividend under the boundary conditions. Because the equations cannot be solved directly under normal circumstances, we chose the sinc numerical method here to approximate the solution of the equations. Then the error analysis of the approximate solution was carried out to illustrate the rationality of the numerical method. Finally, some concrete numerical examples were given.



    加载中


    [1] Z. Zhang, E. C. K. Cheung, H. Yang, On the compound Poisson risk model with periodic capital injections, Astin Bull., 48 (2018), 435–477. https://doi.org/10.1017/asb.2017.22 doi: 10.1017/asb.2017.22
    [2] A. Bazyari, On the ruin probabilities in a discrete time insurance risk process with capital injections and reinsurance, Sankhya A, 85 (2023), 1623–1650. https://doi.org/10.1007/s13171-022-00305-3 doi: 10.1007/s13171-022-00305-3
    [3] J. Li, Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return, Insur. Math. Econ., 71 (2016), 195–204. https://doi.org/10.1016/j.insmatheco.2016.09.003 doi: 10.1016/j.insmatheco.2016.09.003
    [4] Z. Zhang, W. Su, A new efficient method for estimating the Gerber-Shiu function in the classical risk model, Scand. Actuar. J., 5 (2018), 426–449. https://doi.org/10.1080/03461238.2017.1371068 doi: 10.1080/03461238.2017.1371068
    [5] X. Peng, W. Su, Z. Zhang, On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy, J. Ind. Manag. Optim., 16 (2020), 1967–1986. https://doi.org/10.3934/jimo.2019038 doi: 10.3934/jimo.2019038
    [6] R. J. Boucherie, O. J. Boxma, K. Sigman, A note on negative customers, GI/G/1 workload, and risk processes, Prob. Eng. Inform. Sci., 11 (1997), 305–311. https://doi.org/10.1017/S0269964800004848 doi: 10.1017/S0269964800004848
    [7] E. C. K. Cheung, On a class of stochastic models with two-sided jumps, Queueing Syst., 69 (2011), 1–28. https://doi.org/10.1007/s11134-011-9228-z doi: 10.1007/s11134-011-9228-z
    [8] L. Zhang, The Erlang(n) risk model with two-sided jumps and a constant dividend barrier, Commun. Statist. Theory Methods, 50 (2021), 5899–5917. https://doi.org/10.1080/03610926.2020.1737712 doi: 10.1080/03610926.2020.1737712
    [9] C. Wang, J. Xu, S. Wang, N. Deng, An investment risk model with bilateral jumps, AIMS Mathematics, 9 (2024), 2032–2050. https://doi.org/10.3934/math.2024101 doi: 10.3934/math.2024101
    [10] J. Xu, C. Wang, N. Deng, S. Wang, Numerical method for a risk model with two-sided jumps and proportional investment, Mathematics, 11 (2023), 1584. https://doi.org/10.3390/math11071584 doi: 10.3390/math11071584
    [11] J. J. Rebello, K. K. Thampi, Some ruin theory components of two sided jump problems under renewal risk process, Int. Math. Forum, 12 (2017), 311–325. https://doi.org/10.12988/imf.2017.611147 doi: 10.12988/imf.2017.611147
    [12] E. M. Martín-González, A. Murillo-Salas, H. Pantí, Gerber-shiu function for a class of markov-modulated lévy risk processes with two-sided jumps, Methodol. Comput. Appl. Probab., 24 (2022), 2779–2800. https://doi.org/10.1007/s11009-022-09954-1 doi: 10.1007/s11009-022-09954-1
    [13] Z. Palmowski, E. Vatamidou, Phase-type approximations perturbed by a heavy-tailed component for the gerber-shiu function of risk processes with two-sided jumps, Stoch. Models, 36 (2020), 337–363. https://doi.org/10.1080/15326349.2020.1717344 doi: 10.1080/15326349.2020.1717344
    [14] E. C. K. Cheung, H. Liu, G. E. Willmot, Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps, Appl. Math. Comput., 331 (2018), 358–377. https://doi.org/10.1016/j.amc.2018.03.037 doi: 10.1016/j.amc.2018.03.037
    [15] W. Zou, J. Gao, J. Xie, On the expected discounted penalty function and optimal dividend strategy for a risk model with random incomes and interclaimdependent claim sizes, Int. J. Comput. Appl. Math., 255 (2014), 270–281. https://doi.org/10.1016/j.cam.2013.05.004 doi: 10.1016/j.cam.2013.05.004
    [16] H. U. Gerber, E. S. W. Shiu, The time value of ruin in a sparre andersen model, N. Am. Actuar. J., 9 (2005), 49–69. https://doi.org/10.1080/10920277.2005.10596197 doi: 10.1080/10920277.2005.10596197
    [17] C. Yin, Y. Shen, Y. Wen, Exit problems for jump processes with applications to dividend problems, Int. J. Comput. Appl. Math., 245 (2013), 30–52. https://doi.org/10.1016/j.cam.2012.12.004 doi: 10.1016/j.cam.2012.12.004
    [18] H. Cossette, E. Marceau, F. Marri, On a compound Poisson risk model with dependence and in the presence of a constant dividend barrier, Appl. Stoch. Models Bus. Ind., 30 (2014), 82–98. https://doi.org/10.1002/asmb.1928 doi: 10.1002/asmb.1928
    [19] J. Xie, W. Zou, On the expected discounted penalty function for a risk model with dependence under a multi-layer dividend strategy, Commun. Statist. Theory Methods, 46 (2017), 1898–1915. https://doi.org/10.1080/03610926.2015.1030424 doi: 10.1080/03610926.2015.1030424
    [20] L. Bo, R. Song, D. Tang, Y. Wang, X. Yang, Lévy risk model with two-sided jumps and a barrier dividend strategy, Insur. Math. Econ., 50 (2012), 280–291. https://doi.org/10.1016/j.insmatheco.2011.12.002 doi: 10.1016/j.insmatheco.2011.12.002
    [21] X. Chen, H. Ou, A compound Poisson risk model with proportional investment, Int. J. Comput. Appl. Math., 242 (2013), 248–260. https://doi.org/10.1016/j.cam.2012.10.027 doi: 10.1016/j.cam.2012.10.027
    [22] M. Escobar-Anel, A. Lichtenstern, R. Zagst, Behavioral portfolio insurance strategies, Fin. Mark. Portfolio Manage., 34 (2020), 353–399. https://doi.org/10.1007/s11408-020-00353-5 doi: 10.1007/s11408-020-00353-5
    [23] H. Albrecher, E. C. K. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function, Scand. Actuar. J., 2013 (2013), 424–452. https://doi.org/10.1080/03461238.2011.624686 doi: 10.1080/03461238.2011.624686
    [24] W. Zhuo, H. Yang, X. Chen, Expected discounted penalty function for a phase-type risk model with stochastic return on investment and random observation periods, Kybernetes, 47 (2018), 1420–1434. https://doi.org/10.1108/K-05-2017-0153 doi: 10.1108/K-05-2017-0153
    [25] E. C. K. Cheung, Z. Zhang, Periodic threshold-type dividend strategy in the compound Poisson risk model, Scand. Actuar. J., 2019 (2019), 1–31. https://doi.org/10.1080/03461238.2018.1481454 doi: 10.1080/03461238.2018.1481454
    [26] H. Albrecher, E. C. K. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: dividends, Astin Bull., 41 (2011), 645–672. https://doi.org/10.2143/AST.41.2.2136991 doi: 10.2143/AST.41.2.2136991
    [27] F. Stenger, Handbook of sinc numerical methods, Boca Raton: CRC Press, 2011. https://doi.org/10.1201/b10375
    [28] C. Wang, N. Deng, S. Shen, Numerical method for a perturbed risk model with proportional investment, Mathematics, 11 (2022), 43. https://doi.org/10.3390/math11010043 doi: 10.3390/math11010043
    [29] Y. Liu, X. Chen, W. Zhuo, Dividends under threshold dividend strategy with randomized observation periods and capital-exchange agreement, Int. J. Comput. Appl. Math., 366 (2022), 112426. https://doi.org/10.1016/j.cam.2019.112426 doi: 10.1016/j.cam.2019.112426
    [30] Y. Wu, X. Wu, Linearized and rational approximation method for solving non-linear Burgers' equation, Internat. J. Numer. Methods Fluids, 45 (2004), 509–525. https://doi.org/10.1002/fld.714 doi: 10.1002/fld.714
    [31] F. Stenger, Numerical methods based on sinc and analytic functions, New York: Springer, 1993. http://doi.org/10.1007/978-1-4612-2706-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(433) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog