Research article

Steady states and spatiotemporal dynamics of a diffusive predator-prey system with predator harvesting

  • Received: 30 June 2024 Revised: 25 July 2024 Accepted: 31 July 2024 Published: 13 August 2024
  • MSC : 35B32, 35J65, 92D25

  • From the perspective of ecological control, harvesting behavior plays a crucial role in the ecosystem natural cycle. This paper proposes a diffusive predator-prey system with predator harvesting to explore the impact of harvesting on predatory ecological relationships. First, the existence and boundedness of system solutions were investigated and the non-existence and existence of non-constant steady states were obtained. Second, the conditions for Turing instability were given to further investigate the Turing patterns. Based on these conditions, the amplitude equations at the threshold of instability were established using weakly nonlinear analysis. Finally, the existence, direction, and stability of Hopf bifurcation were proven. Furthermore, numerical simulations were used to confirm the correctness of the theoretical analysis and show that harvesting has a strong influence on the dynamical behaviors of the predator-prey systems. In summary, the results of this study contribute to promoting the research and development of predatory ecosystems.

    Citation: Rongjie Yu, Hengguo Yu, Min Zhao. Steady states and spatiotemporal dynamics of a diffusive predator-prey system with predator harvesting[J]. AIMS Mathematics, 2024, 9(9): 24058-24088. doi: 10.3934/math.20241170

    Related Papers:

  • From the perspective of ecological control, harvesting behavior plays a crucial role in the ecosystem natural cycle. This paper proposes a diffusive predator-prey system with predator harvesting to explore the impact of harvesting on predatory ecological relationships. First, the existence and boundedness of system solutions were investigated and the non-existence and existence of non-constant steady states were obtained. Second, the conditions for Turing instability were given to further investigate the Turing patterns. Based on these conditions, the amplitude equations at the threshold of instability were established using weakly nonlinear analysis. Finally, the existence, direction, and stability of Hopf bifurcation were proven. Furthermore, numerical simulations were used to confirm the correctness of the theoretical analysis and show that harvesting has a strong influence on the dynamical behaviors of the predator-prey systems. In summary, the results of this study contribute to promoting the research and development of predatory ecosystems.



    加载中


    [1] A. M. Turing, The chemical basis of morphogenesis, Bltn. Mathcal. Biology., 52 (1990), 153–197. https://doi.org/10.1007/BF02459572 doi: 10.1007/BF02459572
    [2] M. X. Chen, R. C. Wu, Steady states and spatiotemporal evolution of a diffusive predator-prey model, Chaos. Solit. Fract., 170 (2023), 113397. https://doi.org/10.1016/j.chaos.2023.113397 doi: 10.1016/j.chaos.2023.113397
    [3] X. Y. Gao, S. Ishag, S. M. Fu, W. J. Li, W. M. Wang, Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting, Nonlin. Anal. Rwa., 51 (2020), 102962. https://doi.org/10.1016/j.nonrwa.2019.102962 doi: 10.1016/j.nonrwa.2019.102962
    [4] L. Zhang, J. Liu, M. Banerjee, Hopf and steady state bifurcation analysis in a ratio-dependent predator-prey model, Commun. Nonlinear. Sci. Numer. Simul., 44 (2017), 52–73. https://doi.org/10.1016/j.cnsns.2016.07.027 doi: 10.1016/j.cnsns.2016.07.027
    [5] M. C. Kohnke, I. Siekmann, H. Malchow, Taxis-driven pattern formation in a predator-prey model with group defense, Ecol. Complex., 43 (2020), 100848. https://doi.org/10.1016/j.ecocom.2020.100848 doi: 10.1016/j.ecocom.2020.100848
    [6] X. Y. Wang, F. Lutscher, Turing patterns in a predator-prey model with seasonality, J. Math. Biol., 78 (2019), 711–737. https://doi.org/10.1007/s00285-018-1289-8 doi: 10.1007/s00285-018-1289-8
    [7] Y. L. Li, D. M. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos. Solit. Fract., 34 (2007), 606–620. https://doi.org/10.1016/j.chaos.2006.03.068 doi: 10.1016/j.chaos.2006.03.068
    [8] G. T. Skalski, J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecol., 82 (2001), 3083–3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
    [9] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [10] K. H. Elliott, G. S. Betini, D. R. Norris, Fear creates an Allee effect: experimental evidence from seasonal populations, Proc. Biol. Sci., 284 (2017), 20170878. https://doi.org/10.1098/rspb.2017.0878 doi: 10.1098/rspb.2017.0878
    [11] X. B. Zhang, Q. An, L. Wang, Spatiotemporal dynamics of a delayed diffusive ratio-dependent predator-prey model with fear effect, Nonlinear. Dyn., 105 (2021), 3775–3790. https://doi.org/10.1007/s11071-021-06780-x doi: 10.1007/s11071-021-06780-x
    [12] H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
    [13] V. Tiwari, J. P. Tripathi, S. Mishra, R. K. Upadhyay, Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator-prey systems, Appl. Math. Comput., 371 (2020), 124948. https://doi.org/10.1016/j.amc.2019.124948 doi: 10.1016/j.amc.2019.124948
    [14] K. Sarkar, S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Complex., 42 (2020), 100826. https://doi.org/10.1016/j.ecocom.2020.100826 doi: 10.1016/j.ecocom.2020.100826
    [15] P. Panday, N. Pal, S. Samanta, J. Chattopadhyay, Stability and bifurcation analysis of a three-species food chain model with fear, Int. J. Bifurcat. Chaos., 28 (2018), 1850009. https://doi.org/10.1142/S0218127418500098 doi: 10.1142/S0218127418500098
    [16] D. P. Hu, H. J. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlin. Anal. Rwa., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
    [17] J. C. Huang, Y. J. Gong, S. G. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete. Contin. Dyn. Syst. Ser. B., 18 (2013), 2101–2121. https://doi.org/10.3934/dcdsb.2013.18.2101 doi: 10.3934/dcdsb.2013.18.2101
    [18] R. J. Yu, H. G. Yu, C. J. Dai, Z. L. Ma, Q. Wang, M. Zhao, Bifurcation analysis of Leslie-Gower predator-prey system with harvesting and fear effect, Math. Biosci. Eng., 20 (2023), 18267–18300. https://doi.org/10.3934/mbe.2023812 doi: 10.3934/mbe.2023812
    [19] C. V. Pao, Nonlinear parabolic and elliptic equations, New York: Springer, 1992. https://doi.org/10.1007/978-1-4615-3034-3
    [20] Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqn., 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157
    [21] C. S. Lin, W. M. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Diff. Eqn., 72 (1988), 1–27. https://doi.org/10.1016/0022-0396(88)90147-7 doi: 10.1016/0022-0396(88)90147-7
    [22] G. H. Gunaratne, Q. Ouyang, H. L. Swinney, Pattern formation in the presence of symmetries, Phys. Rev. E., 50 (1994), 2802–2820. https://doi.org/10.1103/PhysRevE.50.2802 doi: 10.1103/PhysRevE.50.2802
    [23] Q. Ouyang, Nonlinear science and the pattern dynamics introduction, Beijing: Peking University Press, 2010.
    [24] Y. Kuramoto, T. Tsuzuki, On the formation of disspipative structures in reaction-diffusion systems, Progr. Theoret. Phys., 54 (1975), 687–699. https://doi.org/10.1143/PTP.54.687 doi: 10.1143/PTP.54.687
    [25] G. Q. Sun, Z. Y. Wu, Z. Wang, Z. Jin, Influence of isolation degree of spatial patterns on persistence of populations, Nonlinear. Dyn., 83 (2016), 811–819. https://doi.org/10.1007/s11071-015-2369-6 doi: 10.1007/s11071-015-2369-6
    [26] N. Iqbal, R. C. Wu, Y. Karaca, R. Shah, W. Weera, Pattern dynamics and Turing instability induced by self-super-cross-diffusive predator-prey model via amplitude equations, AIMS Math., 8 (2023), 2940–2960. https://doi.org/10.3934/math.2023153 doi: 10.3934/math.2023153
    [27] D. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, 1981. https://doi.org/10.1137/1024123
    [28] F. Q. Yi, J. J. Wei, J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Eqn., 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
    [29] M. X. Chen, R. C. Wu, L. P. Chen, Pattern dynamics in a diffusive Gierer-Meinhardt model, Int. J. Bifurcat. Chaos., 30 (2020), 2030035. https://doi.org/10.1142/S0218127420300359 doi: 10.1142/S0218127420300359
    [30] M. X. Chen, R. C. Wu, B. Liu, L. P. Chen, Pattern selection in a predator-prey model with Michaelis-Menten type nonlinear predator harvesting, Ecol. Complex., 36 (2018), 239–249. https://doi.org/10.1016/j.ecocom.2018.09.004 doi: 10.1016/j.ecocom.2018.09.004
    [31] R. J. Han, L. N. Guin, B. X. Dai, Consequences of refuge and diffusion in a spatiotemporal predator-prey model, Nonlin. Anal. RWA., 60 (2021), 103311. https://doi.org/10.1016/j.nonrwa.2021.103311 doi: 10.1016/j.nonrwa.2021.103311
    [32] H. N. Wang, P. Liu, Pattern dynamics of a predator-prey system with cross-diffusion, Allee effect and generalized Holling IV functional response, Chaos. Solit. Fract., 171 (2023), 113456. https://doi.org/10.1016/j.chaos.2023.113456 doi: 10.1016/j.chaos.2023.113456
    [33] R. J. Han, S. Dey, M. Banerjee, Spatio-temporal pattern selection in a prey-predator model with hunting cooperation and Allee effect in prey, Chaos. Solit. Fract., 171 (2023), 113441. https://doi.org/10.1016/j.chaos.2023.113441 doi: 10.1016/j.chaos.2023.113441
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(512) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog