Research article Special Issues

Multiple solutions for quasi-linear elliptic equations with Berestycki-Lions type nonlinearity

  • Received: 06 December 2023 Revised: 24 January 2024 Accepted: 26 March 2024 Published: 06 May 2024
  • 35J20, 35J62

  • We studied the modified nonlinear Schrödinger equation

    $ \begin{equation} -\Delta u-\frac12\Delta(u^2)u = g(u)+h(x), \quad u\in H^1({\mathbb{R}}^N), \end{equation} $

    where $ N\geq3 $, $ g\in C({\mathbb{R}}, {\mathbb{R}}) $ is a nonlinear function of Berestycki-Lions type, and $ h\not\equiv 0 $ is a nonnegative function. When $ \|h\|_{L^2({\mathbb{R}}^N)} $ is suitably small, we proved that (0.1) possesses at least two positive solutions by variational approach, one of which is a ground state while the other is of mountain pass type.

    Citation: Maomao Wu, Haidong Liu. Multiple solutions for quasi-linear elliptic equations with Berestycki-Lions type nonlinearity[J]. Communications in Analysis and Mechanics, 2024, 16(2): 334-344. doi: 10.3934/cam.2024016

    Related Papers:

  • We studied the modified nonlinear Schrödinger equation

    $ \begin{equation} -\Delta u-\frac12\Delta(u^2)u = g(u)+h(x), \quad u\in H^1({\mathbb{R}}^N), \end{equation} $

    where $ N\geq3 $, $ g\in C({\mathbb{R}}, {\mathbb{R}}) $ is a nonlinear function of Berestycki-Lions type, and $ h\not\equiv 0 $ is a nonnegative function. When $ \|h\|_{L^2({\mathbb{R}}^N)} $ is suitably small, we proved that (0.1) possesses at least two positive solutions by variational approach, one of which is a ground state while the other is of mountain pass type.



    加载中


    [1] H. Berestycki, P. L. Lions, Nonlinear scalar field equations, Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [2] H. Berestycki, P. L. Lions, Nonlinear scalar field equations, Ⅱ. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347–375. https://doi.org/10.1007/BF00250556 doi: 10.1007/BF00250556
    [3] L. Jeanjean, S. Lu, Nonlinear scalar field equations with general nonlinearity, Nonlinear Anal., 190 (2020), 111604. https://doi.org/10.1016/j.na.2019.111604 doi: 10.1016/j.na.2019.111604
    [4] J. Mederski, Nonradial solutions of nonlinear scalar field equations, Nonlinearity, 33 (2020), 6349–6380. https://doi.org/10.1088/1361-6544/aba889 doi: 10.1088/1361-6544/aba889
    [5] A. Azzollini, A. Pomponio, On the Schrödinger equation in ${\mathbb{R}}^N$ under the effect of a general nonlinear term, Indiana Univ. Math. J., 58 (2009), 1361–1378. https://doi.org/10.1512/iumj.2009.58.3576 doi: 10.1512/iumj.2009.58.3576
    [6] L. Huang, X. Wu, C. Tang, Ground state solutions and multiple solutions for nonhomogeneous Schrödinger equations with Berestycki–Lions type conditions, Complex Var. Elliptic Equ., 66 (2021), 1717–1730. https://doi.org/10.1080/17476933.2020.1779236 doi: 10.1080/17476933.2020.1779236
    [7] N. Ikoma, On radial solutions of inhomogeneous nonlinear scalar field equations, J. Math. Anal. Appl., 386 (2012), 744–762. https://doi.org/10.1016/j.jmaa.2011.08.032 doi: 10.1016/j.jmaa.2011.08.032
    [8] Y. Li, Nonautonomous nonlinear scalar field equations, Indiana Univ. Math. J., 39 (1990), 283–301. https://doi.org/10.1512/iumj.1990.39.39016 doi: 10.1512/iumj.1990.39.39016
    [9] Y. Jing, H. Liu, Z. Liu, Quasilinear Schrödinger equations involving singular potentials, Nonlinearity, 35 (2022), 1810–1856. https://doi.org/10.1088/1361-6544/ac5099 doi: 10.1088/1361-6544/ac5099
    [10] Y. Jing, H. Liu, Z. Zhang, Quasilinear Schrödinger equations with bounded coefficients, Nonlinearity, 35 (2022), 4939–4985. https://doi.org/10.1088/1361-6544/ac821b doi: 10.1088/1361-6544/ac821b
    [11] T. Saito, Existence of a positive solution for some quasilinear elliptic equations in ${\mathbb{R}}^N$, J. Differential Equations, 338 (2022), 591–635. https://doi.org/10.1016/j.jde.2022.08.029 doi: 10.1016/j.jde.2022.08.029
    [12] F. Gao, V. R$\breve{ \rm a} $dulescu, M. Yang, Y. Zheng, Standing waves for the pseudo-relativistic Hartree equation with Berestycki-Lions nonlinearity, J. Differential Equations, 295 (2021), 70–112. https://doi.org/10.1016/j.jde.2021.05.047 doi: 10.1016/j.jde.2021.05.047
    [13] V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557–6579. https://doi.org/10.1090/S0002-9947-2014-06289-2 doi: 10.1090/S0002-9947-2014-06289-2
    [14] T. Godoy, Singular elliptic problems with Dirichlet or mixed Dirichlet-Neumann non-homogeneous boundary conditions, Opuscula Math., 43 (2023), 19–46. https://doi.org/10.7494/OpMath.2023.43.1.19 doi: 10.7494/OpMath.2023.43.1.19
    [15] N. Zeddini, R. Saeed Sari, Existence of positive continuous weak solutions for some semilinear elliptic eigenvalue problems, Opuscula Math., 42 (2022), 489–519. https://doi.org/10.7494/OpMath.2022.42.3.489 doi: 10.7494/OpMath.2022.42.3.489
    [16] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262
    [17] V. Makhankov, V. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1–86. https://doi.org/10.1016/0370-1573(84)90106-6 doi: 10.1016/0370-1573(84)90106-6
    [18] G. Quispel, H. Capel, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982), 41–80. https://doi.org/10.1016/0378-4371(82)90104-2 doi: 10.1016/0378-4371(82)90104-2
    [19] J. Liu, Y. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879–901. https://doi.org/10.1081/PDE-120037335 doi: 10.1081/PDE-120037335
    [20] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008
    [21] J. Liu, Y. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5
    [22] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0
    [23] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [24] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [25] J. Hirata, N. Ikoma, K. Tanaka, Nonlinear scalar field equations in ${\mathbb{R}}^N$: mountain pass and symmetric mountain pass approaches, Topol. Meth. Nonlinear Anal., 35 (2010), 253–276. Available from: https://www.tmna.ncu.pl/static/published/2010/v35n2-04.pdf.
    [26] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(343) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog