Research article

Existence and asymptotic behavior for ground state sign-changing solutions of fractional Schrödinger-Poisson system with steep potential well

  • Received: 16 October 2023 Revised: 30 January 2024 Accepted: 13 March 2024 Published: 11 April 2024
  • 35A15; 35B40; 35J20; 35J60

  • In this paper, we investigate the existence of ground state sign-changing solutions for the following fractional Schrödinger-Poisson system

    $ \begin{equation} \begin{cases} (-\Delta)^s u+V_{\lambda} (x)u+\mu\phi u = f(u), & \; \mathrm{in}\; \; \mathbb{R}^3, \\ (-\Delta)^t \phi = u^2, & \; \mathrm{in}\; \; \mathbb{R}^3, \end{cases} \nonumber \end{equation} $

    where $ \mu > 0, s\in(\frac{3}{4}, 1), t\in(0, 1) $ and $ V_{\lambda}(x) $ = $ \lambda V(x)+1 $ with $ \lambda > 0 $. Under suitable conditions on $ f $ and $ V $, by using the constraint variational method and quantitative deformation lemma, if $ \lambda > 0 $ is large enough, we prove that the above problem has one least energy sign-changing solution. Moreover, for any $ \mu > 0 $, the least energy of the sign-changing solution is strictly more than twice of the energy of the ground state solution. In addition, we discuss the asymptotic behavior of ground state sign-changing solutions as $ \lambda\rightarrow \infty $ and $ \mu\rightarrow0 $.

    Citation: Xiao Qing Huang, Jia Feng Liao. Existence and asymptotic behavior for ground state sign-changing solutions of fractional Schrödinger-Poisson system with steep potential well[J]. Communications in Analysis and Mechanics, 2024, 16(2): 307-333. doi: 10.3934/cam.2024015

    Related Papers:

  • In this paper, we investigate the existence of ground state sign-changing solutions for the following fractional Schrödinger-Poisson system

    $ \begin{equation} \begin{cases} (-\Delta)^s u+V_{\lambda} (x)u+\mu\phi u = f(u), & \; \mathrm{in}\; \; \mathbb{R}^3, \\ (-\Delta)^t \phi = u^2, & \; \mathrm{in}\; \; \mathbb{R}^3, \end{cases} \nonumber \end{equation} $

    where $ \mu > 0, s\in(\frac{3}{4}, 1), t\in(0, 1) $ and $ V_{\lambda}(x) $ = $ \lambda V(x)+1 $ with $ \lambda > 0 $. Under suitable conditions on $ f $ and $ V $, by using the constraint variational method and quantitative deformation lemma, if $ \lambda > 0 $ is large enough, we prove that the above problem has one least energy sign-changing solution. Moreover, for any $ \mu > 0 $, the least energy of the sign-changing solution is strictly more than twice of the energy of the ground state solution. In addition, we discuss the asymptotic behavior of ground state sign-changing solutions as $ \lambda\rightarrow \infty $ and $ \mu\rightarrow0 $.



    加载中


    [1] T. Bartsch, Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Partial Differential Equations., 20 (1995), 1725–1741. https://doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149
    [2] S. Chang, M. Gonźalez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410–1432. https://doi.org/10.1016/j.aim.2010.07.016 doi: 10.1016/j.aim.2010.07.016
    [3] R. Cont, P. Tankov, Financial modeling with jump processes, in: Chapman Hall/CRC Financial Mathematics Series, Boca Raton, 2004. https://doi.org/10.1201/9780203485217
    [4] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268 (2000), 298–305. https://doi.org/10.1016/s0375-9601(00)00201-2 doi: 10.1016/s0375-9601(00)00201-2
    [5] N. Laskin, Fractional Schrödinger equation, Phys. Rev., 66 (2002), 56–108. https://doi.org/10.1103/physreve.66.056108 doi: 10.1103/physreve.66.056108
    [6] R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/s0370-1573(00)00070-3 doi: 10.1016/s0370-1573(00)00070-3
    [7] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153
    [8] S. Feng, L. Wang, L. Huang, Least energy sign-changing solutions of fractional Kirchhoff-Schrödinger-Poisson system with critical and logarithmic nonlinearity, Complex Var. Elliptic Equ., 68 (2023), 81–106. https://doi.org/10.1080/17476933.2021.1975116 doi: 10.1080/17476933.2021.1975116
    [9] L. Guo, Y. Sun, G. Shi. Ground states for fractional nonlocal equations with logarithmic nonlinearity, Opuscula Math., 42 (2022), 157–178. https://doi.org/10.7494/opmath.2022.42.2.157 doi: 10.7494/opmath.2022.42.2.157
    [10] D. Wang, H. Zhang, Y. Ma, W. Guan, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system with potential vanishing at infinity, J. Appl. Math. Comput., 61 (2019), 611–634. https://doi.org/10.1007/s12190-019-01265-y doi: 10.1007/s12190-019-01265-y
    [11] D. Wang, Y. Ma, W. Guan, Least energy sign-changing solutions for the fractional Schrödinger-Poisson systems in $\mathbb{R}^3$, Bound. Value Probl., 25 (2019), 18 pp. https://doi.org/10.1186/s13661-019-1128-x doi: 10.1186/s13661-019-1128-x
    [12] L. Guo, Sign-changing solutions for fractional Schrödinger-Poisson system in $\mathbb{R}^3$, Appl Anal., 98 (2019), 2085–2104. https://doi.org/10.1080/00036811.2018.1448074 doi: 10.1080/00036811.2018.1448074
    [13] C. Ji, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system in $\mathbb{R}^3$, Ann. Mat. Pura Appl., 198 (2019), 1563–1579. https://doi.org/10.1007/s10231-019-00831-2 doi: 10.1007/s10231-019-00831-2
    [14] W. Jiang, J. Liao, Multiple positive solutions for fractional Schrödinger-Poisson system with doubly critical exponents, Qual. Theory Dyn. Syst., 22 (2023), 25. https://doi.org/10.1007/s12346-022-00726-3 doi: 10.1007/s12346-022-00726-3
    [15] S. Liu, J. Yang, Y. Su, H. Chen, Sign-changing solutions for a fractional Schrödinger-Poisson system, Appl. Anal., 102 (2023), 1547–1581. https://doi.org/10.1080/00036811.2021.1991916 doi: 10.1080/00036811.2021.1991916
    [16] Y. Yu, F. Zhao, L. Zhao, Positive and sign-changing least energy solutions for a fractional Schrödinger-Poisson system with critical exponent, Appl. Anal., 99 (2020), 2229–2257. https://doi.org/10.1080/00036811.2018.1557325 doi: 10.1080/00036811.2018.1557325
    [17] C. Ye, K. Teng, Ground state and sign-changing solutions for fractional Schrödinger-Poisson system with critical growth, Complex Var. Elliptic Equ., 65 (2020), 1360–1393. https://doi.org/10.1080/17476933.2019.1652278 doi: 10.1080/17476933.2019.1652278
    [18] S. Chen, J. Peng, X. Tang, Radial ground state sign-changing solutions for asymptotically cubic or super-cubic fractional Schrödinger-Poisson systems, Complex Var. Elliptic Equ., 65 (2020), 672–694. https://doi.org/10.1080/17476933.2019.1612885 doi: 10.1080/17476933.2019.1612885
    [19] G. Zhu, C. Duan, J. Zhang, H. Zhang. Ground states of coupled critical Choquard equations with weighted potentials, Opuscula Math., 42 (2022), 337–354. https://doi.org/10.7494/opmath.2022.42.2.337 doi: 10.7494/opmath.2022.42.2.337
    [20] J. Kang, X. Liu, C. Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well, Discrete Contin. Dyn. Syst. Ser. B., 28 (2023), 1068–1091. https://doi.org/10.3934/dcdsb.2022112 doi: 10.3934/dcdsb.2022112
    [21] S. Chen, X. Tang, J. Peng, Existence and concentration of positive solutions for Schrödinger-Poisson systems with steep well potential, Studia Sci. Math. Hungar., 55 (2018), 53–93. https://doi.org/10.21203/rs.3.rs-3141933/v1 doi: 10.21203/rs.3.rs-3141933/v1
    [22] M. Du, L. Tian, J. Wang, F. Zhang, Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well, J. Math. Phys., 57 (2016), 031502. https://doi.org/10.1063/1.4941036 doi: 10.1063/1.4941036
    [23] Y. Jiang, H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations., 251 (2011), 582–608. https://doi.org/10.1016/j.jde.2011.05.006 doi: 10.1016/j.jde.2011.05.006
    [24] J. Sun, T. Wu, On Schrödinger-Poisson systems under the effect of steep potential well $(2 < p < 4)$, J. Math. Phys., 61 (2020), 071506. https://doi.org/10.1063/1.5114672 doi: 10.1063/1.5114672
    [25] W. Zhang, X. Tang, J. Zhang, Existence and concentration of solutions for Schrödinger-Poisson system with steep potential well, Math. Methods Appl. Sci., 39 (2016), 2549–2557. https://doi.org/10.1002/mma.3712 doi: 10.1002/mma.3712
    [26] X. Huang, J. Liao, R. Liu, Ground state sign-changing solutions for a Schrödinger-Poisson system with steep potential well and critical growth, Qual. Theory Dyn. Syst., 23 (2024), 61. https://doi.org/10.1007/s12346-023-00931-8 doi: 10.1007/s12346-023-00931-8
    [27] J. Lan, X. He, On a fractional Schrödinger-Poisson system with doubly critical growth and a steep potential well, J. Geom. Anal., 33 (2023), 187. https://doi.org/10.1007/s12220-023-01238-5 doi: 10.1007/s12220-023-01238-5
    [28] X. Chang. Groung state solutions of asymptotically linear fractional Schrödinger-Poisson equations, J. Math. Phys., 54 (2013), 061504. https://doi.org/10.1063/1.4809933 doi: 10.1063/1.4809933
    [29] X. Zhong, C. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 39 (2018), 166–184. https://doi.org/10.1016/j.nonrwa.2017.06.014 doi: 10.1016/j.nonrwa.2017.06.014
    [30] Z. Wang, H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^ 3$, Calc. Var. Partial Differential Equations., 52 (2015), 927–943. https://doi.org/10.1007/s00526-014-0738-5 doi: 10.1007/s00526-014-0738-5
    [31] W. Shuai, Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^ 3$, Z. Angew. Math. Phys., 66 (2015), 3267–3282. https://doi.org/10.1007/s00033-015-0571-5 doi: 10.1007/s00033-015-0571-5
    [32] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. https://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005
    [33] H. Hajaiej, X. Yu, Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms. J. Math. Anal. Appl., 396 (2012), 569–577. https://doi.org/10.1016/j.jmaa.2012.06.054 doi: 10.1016/j.jmaa.2012.06.054
    [34] C. Miranda, Un'osservazione su un teorema di Brouwer, Unione Mat. Ital., 3 (1940), 5–7.
    [35] H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261 (1982), 493–514. https://doi.org/10.1007/bf01457453 doi: 10.1007/bf01457453
    [36] K. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations., 193 (2003), 481–499. https://doi.org/10.1016/s0022-0396(03)00121-9 doi: 10.1016/s0022-0396(03)00121-9
    [37] L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations., 255 (2013), 1–23. https://doi.org/10.1016/j.jde.2013.03.005 doi: 10.1016/j.jde.2013.03.005
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(525) PDF downloads(83) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog