Research article

Nonexistence of asymptotically free solutions for nonlinear Schrödinger system

  • Received: 15 December 2023 Revised: 23 January 2024 Accepted: 23 January 2024 Published: 08 April 2024
  • 35Q55, 35P25, 35B40

  • In this paper, the Cauchy problem for the nonlinear Schrödinger system

    $ \begin{equation*} \begin{cases} i\partial_tu_1(x, t) = \Delta u_1(x, t)-|u_1(x, t)|^{p-1}u_1(x, t)-|u_2(x, t)|^{p-1}u_1(x, t), \\ i\partial_tu_2(x, t) = \Delta u_2(x, t)-|u_2(x, t)|^{p-1}u_2(x, t)-|u_1(x, t)|^{p-1}u_2(x, t), \end{cases} \end{equation*} $

    was investigated in $ d $ space dimensions. For $ 1 < p\le 1+2/d $, the nonexistence of asymptotically free solutions for the nonlinear Schrödinger system was proved based on mathematical analysis and scattering theory methods. The novelty of this paper was to give the proof of pseudo-conformal identity on the nonlinear Schrödinger system. The present results improved and complemented these of Bisognin, Sepúlveda, and Vera(Appl. Numer. Math. 59(9)(2009): 2285–2302), in which they only proved the nonexistence of asymptotically free solutions when $ d = 1, \; p = 3 $.

    Citation: Yonghang Chang, Menglan Liao. Nonexistence of asymptotically free solutions for nonlinear Schrödinger system[J]. Communications in Analysis and Mechanics, 2024, 16(2): 293-306. doi: 10.3934/cam.2024014

    Related Papers:

  • In this paper, the Cauchy problem for the nonlinear Schrödinger system

    $ \begin{equation*} \begin{cases} i\partial_tu_1(x, t) = \Delta u_1(x, t)-|u_1(x, t)|^{p-1}u_1(x, t)-|u_2(x, t)|^{p-1}u_1(x, t), \\ i\partial_tu_2(x, t) = \Delta u_2(x, t)-|u_2(x, t)|^{p-1}u_2(x, t)-|u_1(x, t)|^{p-1}u_2(x, t), \end{cases} \end{equation*} $

    was investigated in $ d $ space dimensions. For $ 1 < p\le 1+2/d $, the nonexistence of asymptotically free solutions for the nonlinear Schrödinger system was proved based on mathematical analysis and scattering theory methods. The novelty of this paper was to give the proof of pseudo-conformal identity on the nonlinear Schrödinger system. The present results improved and complemented these of Bisognin, Sepúlveda, and Vera(Appl. Numer. Math. 59(9)(2009): 2285–2302), in which they only proved the nonexistence of asymptotically free solutions when $ d = 1, \; p = 3 $.



    加载中


    [1] J. Shu, J. Zhang, Nonlinear Schrödinger equation with harmonic potential, J. Math. Phys., 47 (2006), 063503. http://dx.doi.org/10.1063/1.2209168 doi: 10.1063/1.2209168
    [2] R. Xu, Y. Liu, Remarks on nonlinear Schrödinger equation with harmonic potential, J. Math. Phys., 49 (2008), 043512. https://doi.org/10.1063/1.2905154 doi: 10.1063/1.2905154
    [3] R. Xu, C. Xu, Cross-constrained problems for nonlinear Schrödinger equation with harmonic potential, Electron. J. Differential Equations, 2012 (2012), 1–12.
    [4] R. Xu, Y. Chen, Y. Yang, et al., Global well-posedness of semilinear hyperbolic equations, parabolic equations and Schrödinger equations, Electron. J. Differential Equations, 2018 (2018), 1–52.
    [5] T. Cazenave, Z. Han, I. Naumkin, Asymptotic behavior for a dissipative nonlinear Schrödinger equation, Nonlinear Anal., 205 (2021), 112243. https://doi.org/10.1016/j.na.2020.112243 doi: 10.1016/j.na.2020.112243
    [6] R. Carles, J. Silva, Large time behavior in nonlinear Schrödinger equations with time dependent potential, Commun. Math. Sci., 13 (2015), 443–460. https://dx.doi.org/10.4310/CMS.2015.v13.n2.a9 doi: 10.4310/CMS.2015.v13.n2.a9
    [7] N. Hayashi, P. Naumkin, Asymptotics in time of solutions to nonlinear Schrödinger equations in two space dimensions, Funkcial. Ekvac., 49 (2006), 415–425. https://doi.org/10.1619/fesi.49.415 doi: 10.1619/fesi.49.415
    [8] M. Kawamoto, R. Muramatsu, Asymptotic behavior of solutions to nonlinear Schrödinger equations with time-dependent harmonic potentials, J. Evol. Equ., 21 (2021), 699–723. https://doi.org/10.1007/s00028-020-00597-8 doi: 10.1007/s00028-020-00597-8
    [9] I. Naumkin, Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential, J. Math. Phys., 57 (2016), 051501. https://doi.org/10.1063/1.4948743 doi: 10.1063/1.4948743
    [10] A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407–1423. https://doi.org/10.1080/03605300600910316 doi: 10.1080/03605300600910316
    [11] R. Xu, Q. Lin, S. Chen, G. Wen, Difficulties in obtaining finite time blowup for fourth-order semilinear Schrödinger equations in the variational method frame, Electron. J. Differential Equations, 83 (2019), 1–22.
    [12] S. Xia, Nonscattering range for the NLS with inverse square potential, J. Math. Anal. Appl., 499 (2021), 125020. https://doi.org/10.1016/j.jmaa.2021.125020 doi: 10.1016/j.jmaa.2021.125020
    [13] J. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270–3273. https://doi.org/10.1063/1.526074 doi: 10.1063/1.526074
    [14] W. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics (eds. J. A. Lavita and J-P. Marchand), Reidel, Dordrecht, Holland, 1974, 53–78. https://doi.org/10.1007/978-94-010-2147-0_3
    [15] R. Glassey, On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187–200. https://doi.org/10.1090/S0002-9947-1973-0330782-7 doi: 10.1090/S0002-9947-1973-0330782-7
    [16] Y. Tsutsumi, K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186–188. https://doi.org/10.1090/S0273-0979-1984-15263-7 doi: 10.1090/S0273-0979-1984-15263-7
    [17] B. Guo, S. Tan, On the asymptotic behavior of nonlinear Schrödinger equations with magnetic effect, Acta Math. Sin. (Engl. Ser.), 11 (1995), 179–187. https://doi.org/10.1007/BF02274060 doi: 10.1007/BF02274060
    [18] N. Hayashi, C. Li, P. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differ. Integral Equ., 24 (2011), 417–434. https://doi.org/10.57262/die/1356018911 doi: 10.57262/die/1356018911
    [19] N. Hayashi, C. Li, T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415–426. https://doi.org/10.7153/dea-03-26 doi: 10.7153/dea-03-26
    [20] N. Hayashi, T. Ozawa, K.Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. I. H. Poincaré AN, 30 (2013), 661–690. http://dx.doi.org/10.1016/j.anihpc.2012.10.007 doi: 10.1016/j.anihpc.2012.10.007
    [21] Y. Nakamura, A. Shimomura, S. Tonegawa, Global existence and asymptotic behavior of solutions to some nonlinear systems of Schrödinger equations, J. Math. Sci. Univ. Tokyo, 22 (2015), 771–792.
    [22] X. Cheng, Z. Guo, G. Hwang, H. Yoon, Global well-posedness and scattering of the two dimensional cubic focusing nonlinear Schrödinger system, preprint, arXiv: 2202.10757.
    [23] N. Hayashi, C. Li, P. Naumkin, Nonexistence of asymptotically free solutions to nonlinear Schrödinger systems, Electron. J. Differential Equations, 2012 (2012), 1–14.
    [24] V. Bisognin, M. Sepúlveda, O. Vera, On the nonexistence of asymptotically free solutions for a coupled nonlinear Schrödinger system, Appl. Numer. Math., 59 (2009), 2285–2302. https://doi.org/10.1016/j.apnum.2008.12.017 doi: 10.1016/j.apnum.2008.12.017
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(677) PDF downloads(70) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog