Research article

Neuro-adaptive finite-time control of fractional-order nonlinear systems with multiple objective constraints

  • Received: 17 May 2023 Revised: 19 June 2023 Accepted: 17 July 2023 Published: 19 December 2023
  • This paper presents a neuro-adaptive finite-time control strategy for uncertain nonstrict-feedback fractional-order nonlinear systems with multiple-objective constraints. To stabilize the uncertain nonlinear fractional-order systems, neural networks (NNs) are employed to identify the unknown nonlinear functions, and dynamic surface control is used to avoid the computational complexity of the backstepping design procedure. The effect caused by the algebraic loop problem can be solved via establishing fractional-order adaptive laws. Introducing a new barrier function, the system output is always limited to the predefined time-varying acceptable range while effectively solving the multi-objective constraint problem. Utilizing fractional-order finite-time stability theory, a finite-time control scheme is constructed to drive the system output to the reference signal in finite time, which ensures better tracking performance. Two examples are given to illustrate the availability and superiority of the presented control scheme.

    Citation: Lusong Ding, Weiwei Sun. Neuro-adaptive finite-time control of fractional-order nonlinear systems with multiple objective constraints[J]. Mathematical Modelling and Control, 2023, 3(4): 355-369. doi: 10.3934/mmc.2023029

    Related Papers:

  • This paper presents a neuro-adaptive finite-time control strategy for uncertain nonstrict-feedback fractional-order nonlinear systems with multiple-objective constraints. To stabilize the uncertain nonlinear fractional-order systems, neural networks (NNs) are employed to identify the unknown nonlinear functions, and dynamic surface control is used to avoid the computational complexity of the backstepping design procedure. The effect caused by the algebraic loop problem can be solved via establishing fractional-order adaptive laws. Introducing a new barrier function, the system output is always limited to the predefined time-varying acceptable range while effectively solving the multi-objective constraint problem. Utilizing fractional-order finite-time stability theory, a finite-time control scheme is constructed to drive the system output to the reference signal in finite time, which ensures better tracking performance. Two examples are given to illustrate the availability and superiority of the presented control scheme.



    加载中


    [1] M. Ö. Efe, Fractional order systems in industrial automation-a survey, IEEE Trans. Ind. Inf., 7 (2011), 582–591. https://doi.org/10.1109/tii.2011.2166775 doi: 10.1109/tii.2011.2166775
    [2] B. Wang, Z. Liu, S. E. Li, S. J. Moura, H. Peng, State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model, IEEE Trans. Control Syst. Technol., 25 (2017), 3–11. https://doi.org/10.1109/tcst.2016.2557221 doi: 10.1109/tcst.2016.2557221
    [3] H. Li, P. Shi, D. Yao, Adaptive sliding-mode control of Markov jump nonlinear systems with actuator faults, IEEE Trans. Autom. Control, 62 (2017), 1933–1939. https://doi.org/1109/tac.2016.2588885
    [4] S. Mobayen, Design of novel adaptive sliding mode controller for perturbed chameleon hidden chaotic flow, Nonlinear Dyn., 92 (2018), 1539–1553. https://doi.org/10.1007/s11071-018-4145-x doi: 10.1007/s11071-018-4145-x
    [5] L. Wang, Adaptive fuzzy systems and control: design and stability analysis, USA: Prentice-Hall, Inc., 1994. https://doi.org/10.5555/174457
    [6] R. M. Sanner, J. J. E. Slotine, Gaussian networks for direct adaptive control, 1991 American Control Conference, 1991. https://doi.org/10.23919/acc.1991.4791778
    [7] H. Liu, Y. Pan, S. Li, Y. Chen, Adaptive fuzzy backstepping control of fractional-order nonlinear systems, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 2209–2217. https://doi.org/10.1109/tsmc.2016.2640950 doi: 10.1109/tsmc.2016.2640950
    [8] Z. Ma, H. Ma, Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems, IEEE Trans. Fuzzy. Syst., 28 (2020), 122–133. https://doi.org/10.1109/tfuzz.2019.2900602 doi: 10.1109/tfuzz.2019.2900602
    [9] Z. Ma, H. Ma, Reduced-order observer-based adaptive backstepping control for fractional-order uncertain nonlinear systems, IEEE Trans. Fuzzy. Syst., 28 (2020), 3287–3301. https://doi.org/10.1109/tfuzz.2019.2949760 doi: 10.1109/tfuzz.2019.2949760
    [10] S. Luo, F. L. Lewis, Y. Song, H. M. Ouakad, Accelerated adaptive fuzzy optimal control of three coupled fractional-order chaotic electromechanical transducers, IEEE Trans. Fuzzy. Syst., 29 (2021), 1701–1714. https://doi.org/10.1109/tfuzz.2020.2984998 doi: 10.1109/tfuzz.2020.2984998
    [11] W. Sun, Y. Wu, X. Lv, Adaptive neural network control for full-state constrained robotic manipulator with actuator saturation and time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 3331–3342. https://doi.org/10.1109/tnnls.2021.3051946 doi: 10.1109/tnnls.2021.3051946
    [12] H. Liu, S. Li, H. Wang, Y. Sun, Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones, Inf. Sci., 454 (2018), 30–45. https://doi.org/10.1016/j.ins.2018.04.069 doi: 10.1016/j.ins.2018.04.069
    [13] Y. Sun, B. Chen, C. Lin, D. Yang, Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure, IEEE Trans. Cybern., 48 (2018), 2774–2782. https://doi.org/10.1109/TCYB.2017.2749511 doi: 10.1109/TCYB.2017.2749511
    [14] H. Wang, K. Xu, P. Liu, J. Qiao, Adaptive fuzzy fast finite-time dynamic surface tracking control for nonlinear systems, IEEE Trans. Circuits Syst. I, 68 (2021), 4337–4348. https://doi.org/10.1109/tcsi.2021.3098830 doi: 10.1109/tcsi.2021.3098830
    [15] S. Song, B. Zhang, J. Xia, Z. Zhang, Adaptive backstepping hybrid fuzzy sliding mode control for uncertain fractional-order nonlinear systems based on finite-time scheme, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 1559–1569. https://doi.org/10.1109/tsmc.2018.2877042 doi: 10.1109/tsmc.2018.2877042
    [16] G. Xue, F. Lin, S. Li, H. Liu, Adaptive fuzzy finite-time backstepping control of fractional-order nonlinear systems with actuator faults via command-filtering and sliding mode technique, Inf. Sci., 600 (2022), 189–208. https://doi.org/10.1016/j.ins.2022.03.084 doi: 10.1016/j.ins.2022.03.084
    [17] Y. Li, M. Wei, S. Tong, Event-triggered adaptive neural control for fractional-order nonlinear systems based on finite-time scheme, IEEE Trans. Cybern., 52 (2022), 9481–9489. https://doi.org/10.1109/tcyb.2021.3056990 doi: 10.1109/tcyb.2021.3056990
    [18] W. Sun, Y. Wu, L. Wang, Trajectory tracking of constrained robotic systems via a hybrid control strategy, Neurocomputing, 330 (2019), 188–195. https://doi.org/10.1016/j.neucom.2018.11.008 doi: 10.1016/j.neucom.2018.11.008
    [19] W. Sun, L. Wang, Y. Wu, Adaptive dynamic surface fuzzy control for state constrained time-delay nonlinear nonstrict feedback systems with unknown control directions, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 7423–7434. https://doi.org/10.1109/tsmc.2020.2969289 doi: 10.1109/tsmc.2020.2969289
    [20] K. Zhao, Y. Song, Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems, IEEE Trans. Autom. Control, 64 (2019), 1265–1272. https://doi.org/10.1109/tac.2018.2845707 doi: 10.1109/tac.2018.2845707
    [21] M. Wei, Y. Li, S. Tong, Event-triggered adaptive neural control of fractional-order nonlinear systems with full-state constraints, Neurocomputing, 412 (2020), 320–326. https://doi.org/10.1016/j.neucom.2020.06.082 doi: 10.1016/j.neucom.2020.06.082
    [22] C. Wang, L. Cui, M. Liang, J. Li, Y. Wang, Adaptive neural network control for a class of fractional-order nonstrict-feedback nonlinear systems with full-state constraints and input saturation, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 6677–6689. https://doi.org/10.1109/tnnls.2021.3082984 doi: 10.1109/tnnls.2021.3082984
    [23] M. Liang, Y. Chang, F. Zhang, S. Wang, C. Wang, S. Lu, et al., Observer-based adaptive fuzzy output feedback control for a class of fractional-order nonlinear systems with full-state constraints, Int. J. Fuzzy Syst., 24 (2022), 1046–1058. https://doi.org/10.1007/s40815-021-01189-5 doi: 10.1007/s40815-021-01189-5
    [24] J. Branke, B. Scheckenbach, M. Stein, K. Deb, H. Schmeck, Portfolio optimization with an envelope-based multi-objective evolutionary algorithm, Eur. J. Oper. Res., 199 (2009), 684–693. https://doi.org/10.1016/j.ejor.2008.01.054 doi: 10.1016/j.ejor.2008.01.054
    [25] H. S. Park, T. T. Nguyen, X. P. Dang, Multi-objective optimization of turning process of hardened material for energy efficiency, Int. J. Precis. Eng. Manuf., 17 (2016), 1623–1631. https://doi.org/10.1007/s12541-016-0188-4 doi: 10.1007/s12541-016-0188-4
    [26] Q. Cui, Y. Wang, Y. Song, Neuroadaptive fault-tolerant control under multiple objective constraints with applications to tire production systems, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 3391–3400. https://doi.org/10.1109/tnnls.2020.2967150 doi: 10.1109/tnnls.2020.2967150
    [27] L. Liu, W. Zhao, Y. Liu, S. Tong, Y. Wang, Adaptive finite-time neural network control of nonlinear systems with multiple objective constraints and application to electromechanical system, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 5416–5426. https://doi.org/10.1109/tnnls.2020.3027689 doi: 10.1109/tnnls.2020.3027689
    [28] X. Song, P. Sun, S. Song, Q. Wu, J. Lu, Event-triggered fuzzy adaptive fixed-time output-feedback control for nonlinear systems with multiple objective constraints, Int. J. Fuzzy Syst., 25 (2023), 275–288. https://doi.org/10.1007/s40815-022-01304-0 doi: 10.1007/s40815-022-01304-0
    [29] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [30] J. Sabouri, S. Effati, M. Pakdaman, A neural network approach for solving a class of fractional optimal control problems, Neural Process. Lett., 45 (2017), 59–74. https://doi.org/10.1007/s11063-016-9510-5 doi: 10.1007/s11063-016-9510-5
    [31] H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 2433–2439. https://doi.org/10.1007/s11071-011-0157-5 doi: 10.1007/s11071-011-0157-5
    [32] P. Butzer, U. Westphal, An introduction to fracational calculus, In: Applications of fractional calculus in physics, 2000, 1–85. https://doi.org/10.1142/9789812817747_0001
    [33] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022 doi: 10.1016/j.cnsns.2014.01.022
    [34] W. Chen, H. Dai, Y. Song, Z. Zhang, Convex Lyapunov functions for stability analysis of fractional order systems, IET Control. Theory Appl., 11 (2017), 1070–1074. https://doi.org/10.1049/iet-cta.2016.0950 doi: 10.1049/iet-cta.2016.0950
    [35] Q. Wang, J. Cao, H. Liu, Adaptive fuzzy control of nonlinear systems with predefined time and accuracy, IEEE Trans. Fuzzy Syst., 30 (2022), 5152–5165. https://doi.org/10.1109/tfuzz.2022.3169852 doi: 10.1109/tfuzz.2022.3169852
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1102) PDF downloads(155) Cited by(0)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog