A novel closed-loop optimal controller for fractional nonlinear quadratic optimal control problems is introduced. By using a new idea, the optimality conditions for the fractional nonlinear problems are derived. The linearized Riccati fractional order differential equation is derived and a new solution method is given for the first time, which can be applied to integer order nonlinear optimal control problems. The proposed closed-loop controller is applied to illustrative examples. Novel unprecedented processes of designing a variable linear controller and of finding the optimal performance index for integer order nonlinear systems are presented.
Citation: Iman Malmir. Novel closed-loop controllers for fractional nonlinear quadratic systems[J]. Mathematical Modelling and Control, 2023, 3(4): 345-354. doi: 10.3934/mmc.2023028
A novel closed-loop optimal controller for fractional nonlinear quadratic optimal control problems is introduced. By using a new idea, the optimality conditions for the fractional nonlinear problems are derived. The linearized Riccati fractional order differential equation is derived and a new solution method is given for the first time, which can be applied to integer order nonlinear optimal control problems. The proposed closed-loop controller is applied to illustrative examples. Novel unprecedented processes of designing a variable linear controller and of finding the optimal performance index for integer order nonlinear systems are presented.
[1] | R. C. Dorf, R. H. Bishop, Modern control systems, Prentice Hall, 2011. |
[2] | D. S. Naidu, Optimal control systems, USA: CRC PRESS, 2003. https://doi.org/10.1201/9781315214429 |
[3] | D. E. Kirk, Optimal control theory: an introduction, Courier Corporation, 2004. |
[4] | K. B. Datta, B. M. Mohan, Orthogonal functions in systems and control, World Scientific Publishing, 1995. https://doi.org/10.1142/2476 |
[5] | H. M. Jaddu, Numerical methods for solving optimal control problems using Chebyshev polynomials, Ph.D. thesis, Japan Advanced Institute of Science and Technology, 1998. |
[6] | L. Bourdin, E. Trélat, Unified Riccati theory for optimal permanent and sampled-data control problems in finite and infinite time horizons, SIAM J. Control Optim., 59 (2021), 489–508. https://doi.org/10.1137/20M1318535 doi: 10.1137/20M1318535 |
[7] | I. Malmir, Simulating two-dimensional optimal control problem of fractional partial differential equations, Adv. Comput. Sci. Eng., 1 (2023), 271–297. https://doi.org/10.3934/acse.2023012 doi: 10.3934/acse.2023012 |
[8] | H. M. Ahmed, Approximate controllability of neutral fractional stochastic differential systems with control on the boundary, Numer. Algebra Control Optim., 2023. https://doi.org/10.3934/naco.2023013 doi: 10.3934/naco.2023013 |
[9] | M. V. Thuan, D. C. Huong, Robust finite-time stability and stabilization of a class of fractional-order switched nonlinear systems, J. Syst. Sci. Complex., 32 (2019), 1479–1497. https://doi.org/10.1007/s11424-019-7394-y doi: 10.1007/s11424-019-7394-y |
[10] | M. V. Thuan, D. C. Huong, New results on stabilization of fractional order nonlinear systems via an LMI approach, Asian J. Control, 20 (2018), 1541–1550. https://doi.org/10.1002/asjc.1644 doi: 10.1002/asjc.1644 |
[11] | D. C. Huong, Event-triggered guaranteed cost control for uncertain neural networks systems with time delays, Circ. Syst. Signal Process., 40 (2021), 4759–4778. https://doi.org/10.1007/s00034-021-01701-0 doi: 10.1007/s00034-021-01701-0 |
[12] | S. Liu, H. Wang, T. Li, Adaptive composite dynamic surface neural control for nonlinear fractional-order systems subject to delayed input, ISA Trans., 134 (2023), 122–133. https://doi.org/10.1016/j.isatra.2022.07.027 doi: 10.1016/j.isatra.2022.07.027 |
[13] | I. Malmir, Novel closed-loop controllers for fractional linear quadratic time-varying systems, Numer. Algebra Control Optimization, 2022. https://doi.org/10.3934/naco.2022032 doi: 10.3934/naco.2022032 |
[14] | Y. Li, Y. Q. Chen, Fractional order linear quadratic regulator, 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, 2008,363–368. https://doi.org/10.1109/MESA.2008.4735696 doi: 10.1109/MESA.2008.4735696 |
[15] | S. Djennoune, M. Bettayeb, Optimal synergetic control for fractional-order systems, Automatica, 49 (2013), 2243–2249. https://doi.org/10.1016/j.automatica.2013.04.007 doi: 10.1016/j.automatica.2013.04.007 |
[16] | O. Martínez-Fuentes, R. Martínez-Guerra, A novel Mittag–Leffler stable estimator for nonlinear fractional-order systems: A linear quadratic regulator approach, Nonlinear Dyn., 94 (2018), 1973–1986. https://doi.org/10.1007/s11071-018-4469-6 doi: 10.1007/s11071-018-4469-6 |
[17] | I. Malmir, Suboptimal control law for a multi fractional high order linear quadratic regulator system in the presence of disturbance, Results Control Optim., 12 (2023), 100251. https://doi.org/10.1016/j.rico.2023.100251 doi: 10.1016/j.rico.2023.100251 |
[18] | I. Malmir, A General Framework for Optimal Control of Fractional Nonlinear Delay Systems by Wavelets, Stat. Optim. Inf. Comput., 8 (2020), 858–875. https://doi.org/10.19139/soic-2310-5070-939 doi: 10.19139/soic-2310-5070-939 |
[19] | R. Luus, X. Zhang, F. Hartig, F. J. Keil, Use of piecewise linear continuous optimal control for time-delay systems, Ind. Eng. Chem. Res., 34 (1995), 4136–4139. https://doi.org/10.1021/IE00038A060 doi: 10.1021/IE00038A060 |
[20] | R. Luus, Iterative dynamic programming, CRC Press, 2019. |
[21] | H. T. Banks, B. M. Lewis, H. T. Tran, Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach, Comput. Optim. Appl., 37 (2007), 177–218. https://doi.org/10.1007/s10589-007-9015-2 doi: 10.1007/s10589-007-9015-2 |
[22] | F. E. Thau, Observing the state of non-linear dynamic systems, Int. J. Control, 17 (1973), 471–479. https://doi.org/10.1080/00207177308932395 doi: 10.1080/00207177308932395 |
[23] | I. Malmir, An efficient method for a variety of fractional time-delay optimal control problems with fractional performance indices, Int. J. Dyn. Control, 11 (2023), 2886–2910. https://doi.org/10.1007/s40435-023-01113-9 doi: 10.1007/s40435-023-01113-9 |