In this paper, we investigate the existence and uniqueness of $ L^p $-solutions for nonlinear fractional differential and integro-differential equations with boundary conditions using the Caputo-Hadamard derivative. By employing Hölder's inequality together with the Krasnoselskii fixed-point theorem and the Banach contraction principle, the study establishes sufficient conditions for solving nonlinear problems. The paper delves into preliminary results, the existence and uniqueness of $ L^p $ solutions to the boundary value problem, and presents the Ulam-Hyers stability. Furthermore, it investigates the existence, uniqueness, and stability of solutions for fractional integro-differential equations. Through standard fixed-points and rigorous mathematical frameworks, this research contributes to the theoretical foundations of nonlinear fractional differential equations. Also, the Adomian decomposition method ($ {\mathcal{ADM}} $) is used to construct the analytical approximate solutions for the problems. Finally, examples are given that illustrate the effectiveness of the theoretical results.
Citation: Abduljawad Anwar, Shayma Adil Murad. On the Ulam stability and existence of $ L^p $-solutions for fractional differential and integro-differential equations with Caputo-Hadamard derivative[J]. Mathematical Modelling and Control, 2024, 4(4): 439-458. doi: 10.3934/mmc.2024035
In this paper, we investigate the existence and uniqueness of $ L^p $-solutions for nonlinear fractional differential and integro-differential equations with boundary conditions using the Caputo-Hadamard derivative. By employing Hölder's inequality together with the Krasnoselskii fixed-point theorem and the Banach contraction principle, the study establishes sufficient conditions for solving nonlinear problems. The paper delves into preliminary results, the existence and uniqueness of $ L^p $ solutions to the boundary value problem, and presents the Ulam-Hyers stability. Furthermore, it investigates the existence, uniqueness, and stability of solutions for fractional integro-differential equations. Through standard fixed-points and rigorous mathematical frameworks, this research contributes to the theoretical foundations of nonlinear fractional differential equations. Also, the Adomian decomposition method ($ {\mathcal{ADM}} $) is used to construct the analytical approximate solutions for the problems. Finally, examples are given that illustrate the effectiveness of the theoretical results.
[1] | R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724 |
[2] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, World Scientific, 2012. https://doi.org/10.1142/8180 |
[3] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[4] | A. Vinodkumar, M. Gowrisankar, P. Mohankumar, Existence and stability results on nonlinear delay integro-differential equations with random impulses, Kyungpook Math. J., 56 (2016), 431–450. https://doi.org/10.5666/KMJ.2016.56.2.431 doi: 10.5666/KMJ.2016.56.2.431 |
[5] | G. Pepe, E. Paifelman, A. Carcaterra, Feedback Volterra control of integro-differential equations, Int. J. Control, 96 (2023), 2651–2670. https://doi.org/10.1080/00207179.2022.2109513 doi: 10.1080/00207179.2022.2109513 |
[6] | H. Jaradat, F. Awawdeh, E. A. Rawashdeh, Analytic solution of fractional integro-differential equations, Ann. Univ. Craiova, 38 (2011), 389. https://doi.org/10.52846/ami.v38i1.389 doi: 10.52846/ami.v38i1.389 |
[7] | S. A. Murad, R. W. Ibrahim, S. B. Hadid, Existence and uniqueness for solution of differential equation with mixture of integer and fractional derivative, Pak. Acad. Sci., 49 (2012), 33–37. |
[8] | X. Liu, M. Jia, B. Wu, Existence and uniqueness of solution for fractional differential equations with integral boundary conditions, Electron. J. Qual. Theory Differ. Equations, 69 (2009), 69. https://doi.org/10.14232/ejqtde.2009.1.69 doi: 10.14232/ejqtde.2009.1.69 |
[9] | S. A. Murad, A. S. Rafeeq, Existence of solutions of integro-fractional differential equation when $\alpha \in(2, 3]$ through fixed-point theorem, J. Math. Comput. Sci., 11 (2021), 6392–6402. https://doi.org/10.28919/jmcs/6272 doi: 10.28919/jmcs/6272 |
[10] | J. G. Abulahad, S. A. Murad, Existence, uniqueness and stability theorems for certain functional fractional initial value problem, Al-Rafidain J. Comput. Sci. Math., 8 (2011), 59–70. https://doi.org/10.33899/csmj.2011.163608 doi: 10.33899/csmj.2011.163608 |
[11] | M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3 (2008), 1–12. |
[12] | M. S. Kumar, M. Deepa, J. Kavitha, V. Sadhasivam, Existence theory of fractional order three-dimensional differential system at resonance, Math. Modell. Control, 3 (2023), 127–138. https://doi.org/10.3934/mmc.2023012 doi: 10.3934/mmc.2023012 |
[13] | S. Zhang, Y. Liu, Existence of solutions for a class of fractional dynamical systems with two damping terms in Banach space, Math. Modell. Control, 2 (2023), 168–180. https://doi.org/10.3934/mmc.2023015 doi: 10.3934/mmc.2023015 |
[14] | S. A. Murad, H. J. Zekri, S. Hadid, Existence and uniqueness theorem of fractional mixed Volterra-Fredholm integrodifferential equation with integral boundary conditions, Int. J. Differ. Equations, 2011 (2011), 304570. https://doi.org/10.1155/2011/304570 doi: 10.1155/2011/304570 |
[15] | S. A. Murad, S. B. Hadid, Existence and uniqueness theorem for fractional differential equation with integral boundary condition, J. Fract. Calc. Appl., 3 (2012), 1–9. |
[16] | S. Arshad, V. Lupulescu, D. O'Regan, $L^p$-solutions for fractional integral equations, Fract. Calc. Appl. Anal., 17 (2014), 259–276. https://doi.org/10.2478/s13540-014-0166-4 doi: 10.2478/s13540-014-0166-4 |
[17] | M. I. Abbas, Existence and uniqueness of solution for a boundary value problem of fractional order involving two Caputo's fractional derivatives, Adv. Differ. Equations, 2015 (2015), 252. https://doi.org/10.1186/s13662-015-0581-9 doi: 10.1186/s13662-015-0581-9 |
[18] | A. M. A. El-Sayed, S. A. A. El-Salam, $ L^p$-solution of weighted Cauchy-type problem of a diffreintegral functional equation, Int. J. Nonlinear Sci., 5 (2008), 281–288. https://doi.org/10.14232/ejqtde.2007.1.30 doi: 10.14232/ejqtde.2007.1.30 |
[19] | T. A. Barton, B. Zhang, $ L^p$-solutions of fractional differential equations, Nonlinear Stud., 19 (2012), 161–177. |
[20] | A. Refice, M. Inc, M. S. Hashemi, M. S. Souid, Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces $L^{p(.)}$, J. Geom. Phys., 178 (2022), 104554. https://doi.org/10.1016/j.geomphys.2022.104554 doi: 10.1016/j.geomphys.2022.104554 |
[21] | R. P. Agarwal, A. V. Lupulescu, D. O'regan, $ L^p$-Solution for a class of fractional integral equations, J. Integral Equations Appl., 29 (2017), 251–270. https://doi.org/10.1216/jie-2017-29-2-251 doi: 10.1216/jie-2017-29-2-251 |
[22] | M. A. Almalahi, S. K. Panchal, F. Jarad, T. Abdeljawad, Ulam-Hyers-Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay, Adv. Differ. Equations, 2021 (2021), 299. https://doi.org/10.1186/s13662-021-03455-0 doi: 10.1186/s13662-021-03455-0 |
[23] | S. A. Murad, Certain analysis of solution for the nonlinear Two-point boundary-value problem with Caputo fractional derivative, J. Funct. Spaces, 2022 (2022), 1385355. https://doi.org/10.1155/2022/1385355 doi: 10.1155/2022/1385355 |
[24] | S. A. Murad, Z. A. Ameen, Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math., 7 (2022), 6404–6419. https://doi.org/ 10.3934/math.2022357 doi: 10.3934/math.2022357 |
[25] | H. Vu, N. V. Hoa, Ulam-Hyers stability for a nonlinear Volterra integro-differential equation, Hacettepe J. Math. Stat., 49 (2020), 1261–1269. https://doi.org/10.15672/hujms.483606 doi: 10.15672/hujms.483606 |
[26] | B. Liu, Uncertainty theory, Springer-Verlag, 2015. https://doi.org/10.1007/978-3-662-44354-5 |
[27] | B. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-13959-8 |
[28] | B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16. |
[29] | A. Berhail, N. Tabouche, Existence and uniqueness of solution for Hadamard fractional differential equations on an infinite interval with integral boundary value conditions, Appl. Math. E-Notes, 20 (2020), 55–69. |
[30] | S. A. Murad, A. S. Rafeeq, T. Abdeljawad, Caputo-Hadamard fractional boundary-value problems in $ \mathfrak{L}^p$-spaces, AIMS Math., 9 (2024), 17464–17488. https://doi.org/10.3934/math.2024849 doi: 10.3934/math.2024849 |
[31] | Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Surv. Math. Appl., 12 (2017), 103–115. |
[32] | A. K. Anwara, S. A. Murada, Existence and Ulam stability of solutions for Caputo-Hadamard fractional differential equations, Gen. Lett. Math., 12 (2022), 85–95. https://doi.org/10.31559/glm2022.12.2.5 doi: 10.31559/glm2022.12.2.5 |
[33] | A. Boutiara, M. Benbachir, K. Guerbati, Boundary value problem for nonlinear Caputo-Hadamard fractional differential equation with Hadamard fractional integral and anti-periodic conditions, Facta Univ. Ser., 36 (2021), 735–748. https://doi.org/10.22190/fumi191022054B doi: 10.22190/fumi191022054B |
[34] | A. Lachouri, A. Ardjouni, A. Djoudi, Existence and uniquness of mild solutions of boundary value problem for Caputo-Hadamard fractional differential equations with integral and anti-periodic conditions, J. Fract. Calc. Appl., 12 (2021), 60–68. |
[35] | S. N. Rao, A. H. Msmali, M. Singh, A. A. Ahmadin, Existence and uniqueness for a system of Caputo-Hadamard fractional differential equations with multipoint boundary conditions, J. Funct. Spaces, 2020 (2020), 1–10. https://doi.org/10.1155/2020/8821471 doi: 10.1155/2020/8821471 |
[36] | J. Wang, Y. Zhou, M. Medved, Existence and stability of fractional differential equations with Hadamard derivative, Topol. Methods Nonlinear Anal., 41 (2013), 113–133. |
[37] | S. Muthaiah, M. Murugesan, T. N. Gopal, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 3 (2019), 579701. https://doi.org/10.31197/atnaa.579701 doi: 10.31197/atnaa.579701 |
[38] | A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math., 5 (2020), 259–272. https://doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017 |
[39] | G. Adomian, Review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247x(88)90170-9 doi: 10.1016/0022-247x(88)90170-9 |
[40] | S. A. Murad S. M. Rasheed, Application of Adomian decomposition method for solving fractional differential equation, J. Educ. Sci., 22 (2009), 93–103. https://doi.org/10.33899/edusj.2009.57439 doi: 10.33899/edusj.2009.57439 |
[41] | P. Guo, The Adomian decomposition method for a type of fractional differential equations, J. Appl. Math. Phys., 7 (2019), 2459–2466. https://doi.org/10.4236/jamp.2019.710166 doi: 10.4236/jamp.2019.710166 |
[42] | J. G. Abdulahad, S. A. Murad, Local existence theorem of fractional differential equations in Lp space, AL-Rafidain J. Comput. Sci. Math., 9 (2012), 71–78. https://doi.org/10.33899/csmj.2012.163702 doi: 10.33899/csmj.2012.163702 |
[43] | W. Benhamida, S. Hamani, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138–145. https://doi.org/10.31197/atnaa.419517 doi: 10.31197/atnaa.419517 |
[44] | G. Wang, S. Liu, R. P. Agrawal, L. Zhang, Positive solution of integral boundary value problem involving Riemann-Liouville fractional derivative, J. Fract. Calc. Appl., 4 (2023), 312–321. https://doi.org/10.21608/jfca.2023.283809 doi: 10.21608/jfca.2023.283809 |
[45] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)80001-0 |
[46] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[47] | M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1995), 123–127. |
[48] | J. Mikusiński, The Bochner integral, Springer, 1978. https://doi.org/10.1007/978-3-0348-5567-9_3 |
[49] | A. Granas, J. Dugundji, Fixed point theory, Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[50] | H. L. Royden, Real analysis, Prentice-Hall of India Private Limited, 1965. |
[51] | F. A. Hendi, W. Shammakh, H. Al-badrani, Existence result and approximate solutions for quadratic integro-differential equations of fractional order, J. King Saud Univ., 31 (2019), 314–321. https://doi.org/10.1016/j.jksus.2018.05.008 doi: 10.1016/j.jksus.2018.05.008 |
[52] | J. S. Duan, R. Rach, D. Baleanu, A. M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations, Commun. Fract. Calc., 3 (2012), 73–99. |