In this paper, semi-tensor product of real matrices is extended to reduced biquaternion matrices, and then some new conclusions of the reduced biquaternion matrices under the vector operator are proposed using semi-tensor product of reduced biquaternion matrices, so that the reduced biquaternion matrix equation $ \sum\limits_{p = 1}^l A_pXB_p = C $ can be transformed into a reduced biquaternion linear equations, then the expression of the least squares solution of the equation is obtained using the $ \mathcal{L}_\mathcal{C} $-representation and Moore-Penrose inverse. The necessary and sufficient conditions for the compatibility and the expression of general solutions of the equation are obtained, and the minimal norm solutions are also given. Finally, our proposed method of solving the reduced biquaternion matrix equation is applied to color image restoration.
Citation: Jianhua Sun, Ying Li, Mingcui Zhang, Zhihong Liu, Anli Wei. A new method based on semi-tensor product of matrices for solving reduced biquaternion matrix equation $ \sum\limits_{p = 1}^l A_pXB_p = C $ and its application in color image restoration[J]. Mathematical Modelling and Control, 2023, 3(3): 218-232. doi: 10.3934/mmc.2023019
In this paper, semi-tensor product of real matrices is extended to reduced biquaternion matrices, and then some new conclusions of the reduced biquaternion matrices under the vector operator are proposed using semi-tensor product of reduced biquaternion matrices, so that the reduced biquaternion matrix equation $ \sum\limits_{p = 1}^l A_pXB_p = C $ can be transformed into a reduced biquaternion linear equations, then the expression of the least squares solution of the equation is obtained using the $ \mathcal{L}_\mathcal{C} $-representation and Moore-Penrose inverse. The necessary and sufficient conditions for the compatibility and the expression of general solutions of the equation are obtained, and the minimal norm solutions are also given. Finally, our proposed method of solving the reduced biquaternion matrix equation is applied to color image restoration.
[1] | Y. Chen, Z. Jia, Y. Peng, Y. Peng, Robust dual-color watermarking based on quaternion singular value decomposition, IEEE Access, 8 (2020), 30628–30642. https://doi.org/10.1109/access.2020.2973044 doi: 10.1109/access.2020.2973044 |
[2] | L. Guo, M. Dai, M. Zhu, Quaternion moment and its invariants for color object classification, Inform. Sciences, 273 (2014), 132–143. https://doi.org/10.1016/j.ins.2014.03.037 doi: 10.1016/j.ins.2014.03.037 |
[3] | N. Yefymenko, R. Kudermetov, Quaternion models of a rigid body rotation motion and their application for spacecraft attitude control, Acta Astronaut., 194 (2022), 76–82. https://doi.org/10.1016/j.actaastro.2022.01.029 doi: 10.1016/j.actaastro.2022.01.029 |
[4] | X. Xu, J. Luo, Z. Wu, The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics, Multibody Syst. Dyn., 49 (2020), 237–270. https://doi.org/10.1007/s11044-019-09697-x doi: 10.1007/s11044-019-09697-x |
[5] | H. Schutte, J. Wenzel, Hypercomplex numbers in digital signal processing, IEEE International Symposium on Circuits and Systems, 2 (1990), 1557–1560. https://doi.org/10.1109/ISCAS.1990.112431 doi: 10.1109/ISCAS.1990.112431 |
[6] | S. Pei, J. Chang, J. Ding, Commutative reduced biquaternions and their Fourier transform for signal and image processing applications, IEEE T. Signal Proces., 52 (2004), 2012–2031. https://doi.org/10.1109/TSP.2004.828901 doi: 10.1109/TSP.2004.828901 |
[7] | T. Isokawa, H. Nishimura, N. Matsui, Commutative quaternion and multistate Hopfield neural networks, The 2010 International Joint Conference on Neural Networks. IEEE, (2010), 1–6. https://doi.org/10.1109/IJCNN.2010.5596736 |
[8] | L. Guo, M. Zhu, X. Ge, Reduced biquaternion canonical transform, convolution and correlation, Signal Process., 91 (2011), 2147–2153. https://doi.org/10.1016/j.sigpro.2011.03.017 doi: 10.1016/j.sigpro.2011.03.017 |
[9] | S. Pei, J. Chang, J. Ding, M. Chen, Eigenvalues and singular value decompositions of reduced biquaternion matrices, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 55 (2008), 2673–2685. https://doi.org/10.1109/TCSI.2008.920068 doi: 10.1109/TCSI.2008.920068 |
[10] | P. Yu, C. Wang, M. Li, Numerical approach for partial eigenstructure assignment problems in singular vibrating structure using active control, T. I. Meas. Control, 44 (2022), 1836–1852. https://doi.org/10.1177/01423312211064674 doi: 10.1177/01423312211064674 |
[11] | A. Elsayed, N. Ahmad, G. Malkawi, Numerical solutions for coupled trapezoidal fully fuzzy Sylvester matrix equations, Adv. Fuzzy Syst., 2022 (2022), 1–29. https://doi.org/10.1155/2022/8926038 doi: 10.1155/2022/8926038 |
[12] | A. Elsayed, B. Saassouh, N. Ahmad, G. Malkawi, Two-stage algorithm for solving arbitrary trapezoidal fully fuzzy Sylvester matrix equations, Symmetry, 14 (2022), 1–24. https://doi.org/10.3390/sym14030446 doi: 10.3390/sym14030446 |
[13] | D. Sorensen, A. Antoulas, The Sylvester equation and approximate balanced reduction, Linear Algebra Appl., 351 (2002), 671–700. https://doi.org/10.1016/s0024-3795(02)00283-5 doi: 10.1016/s0024-3795(02)00283-5 |
[14] | A. Bouhamidi, K. Jbilou, Sylvester Tikhonov-regularization methods in image restoration, J. Comput. Appl. Math., 206 (2007), 86–98. https://doi.org/10.1016/j.cam.2006.05.028 doi: 10.1016/j.cam.2006.05.028 |
[15] | L. Davis, E. Collins, W. Haddad, Discrete-time mixed-norm $H_2/H_\infty$ controller synthesis, Optimal Control Applications and Methods, 17 (1996), 107–121. https://doi.org/10.1002/(SICI)1099-1514(199604/06)17:2<107::AID-OCA567>3.0.CO;2-X doi: 10.1002/(SICI)1099-1514(199604/06)17:2<107::AID-OCA567>3.0.CO;2-X |
[16] | W. Zhang, B. Chen, On stabilizability and exact observability of stochastic systems with their applications, Automatica, 40 (2004), 87–94. https://doi.org/10.1016/j.automatica.2003.07.002 doi: 10.1016/j.automatica.2003.07.002 |
[17] | H. K$\ddot{o}$sal, Least-squares solutions of the reduced biquaternion matrix equation $AX = B$ and their applications in colour image restoration, J. Mod. Optic., 66 (2019), 1802–1810. https://doi.org/10.1080/09500340.2019.1676474 doi: 10.1080/09500340.2019.1676474 |
[18] | S. Yuan, Y. Tian, M. Li, On Hermitian solutions of the reduced biquaternion matrix equation $(AXB, CXD) = (E, G)$, Linear and Multilinear Algebra, 68 (2020), 1355–1373. https://doi.org/10.1080/03081087.2018.1543383 doi: 10.1080/03081087.2018.1543383 |
[19] | W. Ding, Y. Li, A. Wei, Z. Liu, Solving reduced biquaternion matrices equation $\sum\limits_{i = 1}^k A_iXB_i = C$ with special structure based on semi-tensor product of matrices, AIMS Math., 7 (2022), 3258–3276. https://doi.org/10.3934/math.2022181 doi: 10.3934/math.2022181 |
[20] | D. Cheng, Semi-tensor product of matrices and its application to Morgen's problem, Science in China Series: Information Sciences, 44 (2001), 195–212. https://doi.org/10.1007/BF02714570 doi: 10.1007/BF02714570 |
[21] | D. Cheng, From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems, London: Academic Press, 2019. https://doi.org/10.1109/ICCA.2018.8444267 |
[22] | D. Cheng, H. Qi, Z. Li, Analysis and control of Boolean networks: a semi-tensor product approach, London: Springer, 2011. https://doi.org/10.3724/SP.J.1004.2011.00529 |
[23] | W. Zhang, B. Chen, $\mathcal{H}$-representation and Applications to generalized Lyapunov equations and linear stochastic systems, IEEE T. Automat. Contr., 57 (2012), 3009–3022. https://doi.org/10.1109/TAC.2012.2197074 doi: 10.1109/TAC.2012.2197074 |
[24] | G. Golub, C. Van Loan, Matrix computations, 4 Eds., Baltimore: The Johns Hopkins University Press, 2013. |
[25] | S. Gai, G. Yang, M. Wan, L. Wang, Denoising color images by reduced quaternion matrix singular value decomposition, Multidim. Syst. Sign. Process., 26 (2015), 307–320. https://doi.org/10.1007/s11045-013-0268-x doi: 10.1007/s11045-013-0268-x |