Let $ \mathbb{D}^{m \times n} = \{A = A_{1}+\varepsilon A_{2}|A_{1}, A_{2}\in \mathbb{R}^{m \times n}\} $ be the set of all $ m\times n $ real dual matrices. In this paper, the following problems are considered. Problem I: Given dual matrices $ A = A_{1}+\varepsilon A_{2}\in \mathbb{D}^{m\times n} $ and $ B = B_{1}+\varepsilon B_{2}\in \mathbb{D}^{n\times n} $, find $ X\in S $ such that the dual matrix equation $ A^\top XA = B $ is satisfied, where $ S = \{X\in \mathbb{D}^{m \times m}|CX = D, C, D\in \mathbb{D}^{p \times m}\} $. Problem II: Given dual matrices $ A = A_{1}+\varepsilon A_{2}\in \mathbb{D}^{m\times n}, B = B_{1}+\varepsilon B_{2}\in \mathbb{D}^{n\times n} $ and $ \tilde{X} = \tilde{X}_{1}+\varepsilon \tilde{X}_{2}\in \mathbb{D}^{m\times m} $, with $ B_{i} = B^\top_{i}, i = 1, 2 $, find $ \hat{X}\in T $ such that $ \|\hat{X}-\tilde{X}\|_{{\rm D}} = \mathop{\min}\limits_{X\in T} \|X-\tilde{X}\|_{{\rm D}} = \mathop{\min}\limits_{X\in T}\sqrt{\Vert X_{1}-\tilde{X}_{1} \Vert^{2}+\Vert X_{2}-\tilde{X}_{2}\Vert^{2}} $, where $ T = \{X = X_{1}+\varepsilon X_{2}\in \mathbb{D}^{m \times m}|A^\top XA = B \ \ \mbox{s. t.} \ X_{i} = X^\top_{i}, i = 1, 2\} $. We derive the solvability conditions and the representation of the general solution of Problem I using the Moore-Penrose inverse. Also, we deduce the solvability conditions and the explicit formula of $ T $ and the unique approximation solution $ \hat{X} $ of Problem II by applying the Moore-Penrose inverse and Kronecker product of matrices. Finally, we give a numerical example to show the correctness of our result.
Citation: Min Zeng, Yongxin Yuan. On the solutions of the dual matrix equation $ A^\top XA = B $[J]. Mathematical Modelling and Control, 2023, 3(3): 210-217. doi: 10.3934/mmc.2023018
Let $ \mathbb{D}^{m \times n} = \{A = A_{1}+\varepsilon A_{2}|A_{1}, A_{2}\in \mathbb{R}^{m \times n}\} $ be the set of all $ m\times n $ real dual matrices. In this paper, the following problems are considered. Problem I: Given dual matrices $ A = A_{1}+\varepsilon A_{2}\in \mathbb{D}^{m\times n} $ and $ B = B_{1}+\varepsilon B_{2}\in \mathbb{D}^{n\times n} $, find $ X\in S $ such that the dual matrix equation $ A^\top XA = B $ is satisfied, where $ S = \{X\in \mathbb{D}^{m \times m}|CX = D, C, D\in \mathbb{D}^{p \times m}\} $. Problem II: Given dual matrices $ A = A_{1}+\varepsilon A_{2}\in \mathbb{D}^{m\times n}, B = B_{1}+\varepsilon B_{2}\in \mathbb{D}^{n\times n} $ and $ \tilde{X} = \tilde{X}_{1}+\varepsilon \tilde{X}_{2}\in \mathbb{D}^{m\times m} $, with $ B_{i} = B^\top_{i}, i = 1, 2 $, find $ \hat{X}\in T $ such that $ \|\hat{X}-\tilde{X}\|_{{\rm D}} = \mathop{\min}\limits_{X\in T} \|X-\tilde{X}\|_{{\rm D}} = \mathop{\min}\limits_{X\in T}\sqrt{\Vert X_{1}-\tilde{X}_{1} \Vert^{2}+\Vert X_{2}-\tilde{X}_{2}\Vert^{2}} $, where $ T = \{X = X_{1}+\varepsilon X_{2}\in \mathbb{D}^{m \times m}|A^\top XA = B \ \ \mbox{s. t.} \ X_{i} = X^\top_{i}, i = 1, 2\} $. We derive the solvability conditions and the representation of the general solution of Problem I using the Moore-Penrose inverse. Also, we deduce the solvability conditions and the explicit formula of $ T $ and the unique approximation solution $ \hat{X} $ of Problem II by applying the Moore-Penrose inverse and Kronecker product of matrices. Finally, we give a numerical example to show the correctness of our result.
[1] | H. Dai, P. Lancaster, Linear matrix equations from an inverse problem of vibration theory, Linear Algebra Appl., 246 (1996), 31–47. https://doi.org/10.1016/0024-3795(94)00311-4 doi: 10.1016/0024-3795(94)00311-4 |
[2] | Y. X. Peng, X. Y. Hu, L. Zhang, The symmetric ortho-symmetric solution of linear matrix euqation $A^\top XA = B$ and its optimal approximation, Numerical Mathematics a Journal of Chinese Univers, 25 (2003), 372–377. (In Chinese) |
[3] | Z. Z. Li, The $D$-symmetric solutions of matrix equation $A^\top XA = B$ on the linear manifold, Journal of Guangxi Academy of Sciences, 24 (2008), 174–176. (In Chinese) |
[4] | M. A. Clifford, Preliminary sketch of bi-quaternions, Proceedings of the London Mathematical Society, 4 (1873), 381–395. https://doi.org/10.1112/plms/s1-4.1.381 doi: 10.1112/plms/s1-4.1.381 |
[5] | J. Angeles, The dual generalized inverses and their applications in kinematic synthesis, Dordrecht: Springer, 2012. https://doi.org/10.1007/978-94-007-4620-6_1 |
[6] | Y. Gu, J. Y. S. Luh, Dual-number transformations and its applications to robotics, IEEE Journal on Robotics and Automation, 3 (1987), 615–623. https://doi.org/10.1109/JRA.1987.1087138 doi: 10.1109/JRA.1987.1087138 |
[7] | M. L. Keler, Kinematics and statics including friction in single-loop mechanisms by screw calculus and dual vectors, ASME Journal of Engineering for Industry, 95 (1973), 471–480. https://doi.org/10.1115/1.3438179 doi: 10.1115/1.3438179 |
[8] | E. Pennestrì, P. P. Valentini, Linear dual algebra algorithms and their application to kinematics, Dordrecht: Springer, 2009. https://doi.org/10.1007/978-1-4020-8829-2_11 |
[9] | A. T. Yang, F. Freudenstein, Application of dual number quaternions algebra to the analysis of spatial mechanisms, ASME Journal of Applied Mechanics, 86 (1964), 300–308. https://doi.org/10.1115/1.3629601 doi: 10.1115/1.3629601 |
[10] | J. Angeles, The application of dual algebra to kinematic analysis, New York: Springer, 1998. https://doi.org/10.1007/978-3-662-03729-4_1 |
[11] | D. De Falco, E. Pennestrì, F. E. Udwadia, On generalized inverses of dual matrices, Mech. Mach. Theory, 123 (2018), 89–106. https://doi.org/10.1016/j.mechmachtheory.2017.11.020 doi: 10.1016/j.mechmachtheory.2017.11.020 |
[12] | G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mech. Mach. Theory, 11 (1976), 141–156. https://doi.org/10.1016/0094-114x(76)90006-9 doi: 10.1016/0094-114x(76)90006-9 |
[13] | G. R. Pennock, A. T. Yang, Application of dual-number matrices to the inverse kinematics problem of robot manipulators, Journal of Mechanisms, Transmissions, and Automation in Design, 107 (1985), 201–208. https://doi.org/10.1115/1.3258709 doi: 10.1115/1.3258709 |
[14] | D. Condurache, A. Burlacu, Orthogonal dual tensor method for solving the $AX = XB$ sensor calibration problem, Mech. Mach. Theory, 104 (2016), 328–404. https://doi.org/10.1016/j.mechmachtheory.2016.06.002 doi: 10.1016/j.mechmachtheory.2016.06.002 |
[15] | D. Condurache, I.-A. Ciureanu, A novel solution for $AX = YB$ sensor calibration problem using dual Lie algebra, 6th International Conference on Control, Decision and Information Technologies, (2019), 302–307. https://doi.org/10.1109/CoDIT.2019.8820336 |
[16] | F. E. Udwadia, Dual generalized inverse and their use in solving systems of linear dual equations, Mech. Mach. Theory, 156 (2021), 104158. https://doi.org/10.1016/j.mechmachtheory.2020.104158 doi: 10.1016/j.mechmachtheory.2020.104158 |
[17] | J. Zhong, Y. Zhang, Dual group inverses of dual matrices and their applications in solving systems of linear dual equations, AIMS Math., 5 (2022), 7606–7624. https://doi.org/10.3934/math.2022427 doi: 10.3934/math.2022427 |
[18] | E. Pennestrì, P. P. Valentini, Linear dual algebra algorithms and their application to kinematics, Multibody Dynamics, 12 (2009), 207–209. https://doi.org/10.1007/978-1-4020-8829-2_11 doi: 10.1007/978-1-4020-8829-2_11 |
[19] | Y. G. Tian, H. X. Wang, Relations between least-squares and least-rank solutions of the matrix equation $AXB = C$, Appl. Math. Comput., 21 (2013), 10293–10301. https://doi.org/10.1016/j.amc.2013.03.137 doi: 10.1016/j.amc.2013.03.137 |
[20] | J. K. Baksalary, R. Kala, The matrix equation $AXB+CYD = E$, Linear Algebra and its Applications, 30 (1980), 141–147. https://doi.org/10.1016/0024-3795(80)90189-5 doi: 10.1016/0024-3795(80)90189-5 |
[21] | Y. H. Liu, Y. G. Tian, Y. Takane, Ranks of Hermitian and skew-Hermitian solutions to the matrix equation $AXA^\ast = B$, Linear Algebra Appl., 431 (2009), 2359–2372. https://doi.org/10.1016/j.laa.2009.03.011 doi: 10.1016/j.laa.2009.03.011 |
[22] | G. S. Rogers, Matrix derivatives, Lecture notes in statistics, 1980. |
[23] | P. Lancaster, M. Tismenetsky, The theroy of matrices, New York: Academic Press, 1985. |
[24] | J. L. Chen, X. H. Chen, Special matrices, BeiJing: Tsinghua University Press, 2002. (In Chinese) |