Research article Special Issues

Dynamics and analysis of COVID-19 disease transmission: The effect of vaccination and quarantine

  • Received: 03 January 2023 Revised: 09 April 2023 Accepted: 25 April 2023 Published: 01 September 2023
  • In this study, a fractional-order model for COVID-19 disease transmission is proposed and studied. First, the disease-free equilibrium and the basic reproduction number, $ {\cal R}_0 $ of the model has been communicated. The local and global stability of the disease-free equilibrium have been proved using well-constructed Lyapunov functions. Moreover, a normalized sensitivity analysis for the model parameters has been performed to identify their influence on $ {\cal R}_0 $. Real data on COVID-19 disease from Wuhan in China has been used to validate the proposed model. Finally, a simulation of the model has been performed to determine the effects of memory and control strategies. Overall, one can note that vaccination and quarantine have the potential to minimize the spread of COVID-19 in the population.

    Citation: Mlyashimbi Helikumi, Paride O. Lolika. Dynamics and analysis of COVID-19 disease transmission: The effect of vaccination and quarantine[J]. Mathematical Modelling and Control, 2023, 3(3): 192-209. doi: 10.3934/mmc.2023017

    Related Papers:

  • In this study, a fractional-order model for COVID-19 disease transmission is proposed and studied. First, the disease-free equilibrium and the basic reproduction number, $ {\cal R}_0 $ of the model has been communicated. The local and global stability of the disease-free equilibrium have been proved using well-constructed Lyapunov functions. Moreover, a normalized sensitivity analysis for the model parameters has been performed to identify their influence on $ {\cal R}_0 $. Real data on COVID-19 disease from Wuhan in China has been used to validate the proposed model. Finally, a simulation of the model has been performed to determine the effects of memory and control strategies. Overall, one can note that vaccination and quarantine have the potential to minimize the spread of COVID-19 in the population.



    加载中


    [1] M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos, Solitons & Fractals, 139 (2020), 110007. http://doi.org/10.1016/j.chaos.2020.110007 doi: 10.1016/j.chaos.2020.110007
    [2] C. H. Jeong, K. J. Wan, R. S. Ki, K. Y. Kyung, S. J. Soo, M. J. Ho, et al., COVID-19 transmission and blood transfusion: A case report, J. INFECT. PUBLIC HEAL., 13 (2020), 1678–1679. http://doi.org/10.1016/j.jiph.2020.05.001 doi: 10.1016/j.jiph.2020.05.001
    [3] R. J. Larsen, R. M. Margaret, D. J. Martin, K. Peter, B. J. Hicks, Modeling the onset of symptoms of COVID-19, Front. Public Health, 8 (2020), 473. http://doi.org/10.3389/fpubh.2020.00473 doi: 10.3389/fpubh.2020.00473
    [4] H. Abdul, A. Shmmon, S. S. Ali, A. Mumtaz, M. Shruti, A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention, Ejmo, 4 (2020), 116–125. http://doi.org/10.14744/ejmo.2020.90853 doi: 10.14744/ejmo.2020.90853
    [5] R. Yelena, B. Jennifer, M. Haley, H. Whitney, B. Karen, C. J. Rhonda, A model of disparities: risk factors associated with COVID-19 infection, International journal for equity in health, 19 (2020), 1–10. http://doi.org/10.1186/s12939-020-01242-z doi: 10.1186/s12939-020-01242-z
    [6] B. A. William, G. O. Ouslander, B. A. William, G. O. Joseph, COVID-19 Presents High Risk to Older Persons, J. AM. GERIATR. SOC., 68 (2020), 681. https://doi.org/10.1111/jgs.16426 doi: 10.1111/jgs.16426
    [7] C. Shao-Chung, C. Yuan-Chia, C. Y-L. Fan, C. Yu-Chan, C. Mingte, Y. Chin-Hua, et al., First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan, J. FORMOS. MED. ASSOC., 119 (2020), 747–751. http://doi.org/10.1016/j.jfma.2020.02.007 doi: 10.1016/j.jfma.2020.02.007
    [8] A. Khadijah, B. Y. Abdul, Y. Maryam, T. Javaid, S. I. Abira. Progress of COVID-19 Epidemic in Pakistan, Asia Pacific Journal of Public Health, 32 (2020), 154–156 http://doi.org/10.1177/1010539520927259 doi: 10.1177/1010539520927259
    [9] J. M. Abdul-Rahman, K. H. Alfred, Mathematical modelling on COVID-19 transmission impacts with preventive measures: a case study of Tanzania, J. Biol. Dyn., 14 (2020), 748–766. http://doi.org/10.1080/17513758.2020.1823494 doi: 10.1080/17513758.2020.1823494
    [10] A. Imran, ML. A. Omar, COVID-19: Disease, management, treatment, and social impact, Sci. Total Environ., 728 (2020), 138861 http://doi.org/10.1016/j.scitotenv.2020.138861 doi: 10.1016/j.scitotenv.2020.138861
    [11] M. I. Baltazar, N. J. Samwel, M. Melina, S. L. Philip, P. J. Jackson, A. Caroline, et al., Community engagement in COVID-19 prevention: experiences from Kilimanjaro region, Northern Tanzania, The Pan African Medical Journal, 35 (2020), 146. http://doi.org/10.11604/pamj.supp.2020.35.2.24473 doi: 10.11604/pamj.supp.2020.35.2.24473
    [12] L. Marc, E. D. Natalie, Understanding COVID-19 vaccine efficacy, Science, 370 (2020), 763–765. http://doi.org/10.1126/science.abe5938 doi: 10.1126/science.abe5938
    [13] S. Adekunle, O. Chuku, H. Zaheeda, P. Risha, D. Priyank, P. Stephanie, et al., Global pandemicity of COVID-19: situation report, Infectious Diseases: Research and Treatment, 14 (2020).
    [14] R. R. Kumar, K. Subhas, T. P. Kumar, V. Ezio, M. A. Kumar, Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India, J. Appl. Math. Comput., 68 (2020), 19–44. http://doi.org/10.1007/s12190-021-01507-y doi: 10.1007/s12190-021-01507-y
    [15] G. Said, B. Yassir, A. Abdelghafour, B. Mostafa, K. Fahd, M. Driss, An adaptive social distancing SIR model for COVID-19 disease spreading and forecasting, Epidemiologic Methods, 10 (2021), 20200044. http://doi.org/10.1515/em-2020-0044 doi: 10.1515/em-2020-0044
    [16] K. W. Ogilvy, G. M. Anderson, Contributions to the mathematical theory of epidemics. Ⅱ.—The problem of endemicity, The Royal Society London, 138 (1932), 55–83. http://doi.org/10.1007/BF02464424 doi: 10.1007/BF02464424
    [17] G. Major, G. Y. Udny, An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents, Journal of the Royal statistical society, 83 (1920), 255–279. http://doi.org/10.2307/2341080 doi: 10.2307/2341080
    [18] R. Ronald, An application of the theory of probabilities to the study of a priori pathometry.—Part I, The Royal Society London, 92 (1916), 204–230. http://doi.org/10.1098/rspa.1917.0014 doi: 10.1098/rspa.1917.0014
    [19] B. Daniel, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir, Des Math. And Phis., Mem., (1960), 1–45. doi: 10.1177/003591571801101305
    [20] B. John, Certain Aspects of the Theory of Epidemiology in Special Relation to Plague, Proceedings of the Royal Society of medicine, 11 (1918), 85–132. http://doi.org/10.1177/003591571801101305 doi: 10.1177/003591571801101305
    [21] E. S. Herbert, The interpretation of periodicity in disease prevalence, JSTOR, 92 (1929), 34–73. http://doi.org/10.2307/2341437 doi: 10.2307/2341437
    [22] G. Major, The statistical study of infectious diseases, JSTOR, 109 (1946), 85–110. http://doi.org/10.2307/2981176 doi: 10.2307/2981176
    [23] TJ. B. Norman, The mathematical theory of infectious diseases and its applications, Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE., 1975. http://doi.org/10.2307/3009004
    [24] M. A. Roy, The population dynamics of infectious diseases: theory and applications, Springer, 2013. http://doi.org/10.2307/4361
    [25] H. R. Thieme, Convergence results and a Poincare-Bendison trichotomy for asymptotical autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. http://doi.org/10.1007/bf00173267 doi: 10.1007/bf00173267
    [26] S. Lenhart, JT. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, London, 2007. http://doi.org/10.1201/9781420011418
    [27] W. Wang, X-Q. Zha, Threshold dynamics for compartment epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699–717. http://doi.org/10.1007/s10884-008-9111-8 doi: 10.1007/s10884-008-9111-8
    [28] SF. Dowel, Seasonal Variation in Host Susceptibility and Cycles of Certain Infectious Diseases, EMERG. INFECT. DIS., 7 (2001), 369–374. http://doi.org/10.3201/eid0703.010301 doi: 10.3201/eid0703.010301
    [29] Z. Shuai, J. A. P. Heesterbeek, P. van den Driessche, Extending the type reproduction number to infectious disease control targeting contacts between types, J. Math. Biol., 67 (2013), 1067–1082. http://doi.org/10.1007/s00285-012-0579-9 doi: 10.1007/s00285-012-0579-9
    [30] LS. Pontryagin, VT. Boltyanskii, RV. Gamkrelidze, EF. Mishcheuko, The mathematical theory of optimal processes, Wiley, New Jersey, 1962. http://doi.org/10.1057/jors.1965.92
    [31] P. Van den Driessche, J. Watmough, Reproduction number and subthreshold endemic equilibria for compartment models of disease transmission, Math. Biosci., 180, (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [32] M. Saeedian, M. Khalighi, N. A.-Tafreshi, GR. Jafari, A. Marcel, Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model, Phys. Rev. E, 95 (2017), 022409. http://doi.org/10.1103/physreve.95.022409 doi: 10.1103/physreve.95.022409
    [33] FA. Rihan, QM. A-Mdallal, HJ. AlSakaji, A. H. Adel, A fractional-order epidemic model with time-delay and nonlinear incidence rate, Chaos, Solitons & Fractals, 126 (2019), 97–105. http://doi.org/10.1016/j.chaos.2019.05.039 doi: 10.1016/j.chaos.2019.05.039
    [34] H. Nur'Izzati, K. Adem, Analysis of the fractional order dengue transmission model: a case study in Malaysia, Adv. Differ. Equations, 1 (2019), 1–13. http://doi.org/10.1186/s13662-019-1981-z doi: 10.1186/s13662-019-1981-z
    [35] M. Abderrahim, B. Adnane, H. Khalid, Y. Noura, A fractional order SIR epidemic model with nonlinear incidence rate, Springer, 2018. http://doi.org/10.1186/s13662-018-1613-z
    [36] M. Awais, F. S. Alshammari, S. Ullah, M. A. Khan, S. Islam, Modeling and simulation of the novel coronavirus in Caputo derivative, Results Phys., 19 (2020), 103588. http://doi.org/10.1016/j.rinp.2020.103588 doi: 10.1016/j.rinp.2020.103588
    [37] B. Samia, S. Tareq, FM. T. Delfim, Z. Anwar, Control of COVID-19 dynamics through a fractional-order model, Alex. Eng. J., 60 (2020), 3587–3592. http://doi.org/10.1016/j.aej.2021.02.022 doi: 10.1016/j.aej.2021.02.022
    [38] O.-M. Isaac, A. Lanre, O.Bismark, S. I. Olaniyi, A fractional order approach to modeling and simulations of the novel COVID-19, Adv. Differ. Equations, 1 (2020), 1–21. http://doi.org/10.1186/s13662-020-03141-7 doi: 10.1186/s13662-020-03141-7
    [39] A. Idris, B. I. Abdullahi, Y. Abdullahi, K. Poom, K. Wiyada, Analysis of Caputo fractional-order model for COVID-19 with lockdown, Adv. Differ. Equations, 2020 (2020), 394. http://doi.org/10.1186/s13662-020-02853-0 doi: 10.1186/s13662-020-02853-0
    [40] B. B. Abdullahi, B. Bulent, Optimal control of a fractional order model for the COVID–19 pandemic, Chaos, Solitons & Fractals, 144 (2021), 110678. http://doi.org/10.1016/j.chaos.2021.110678 doi: 10.1016/j.chaos.2021.110678
    [41] A. Omame, M. Abbas, CP. Onyenegecha, A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana–Baleanu derivative, Chaos, Solitons & Fractals, 153 (2021), 111486 http://doi.org/10.1016/j.chaos.2021.111486 doi: 10.1016/j.chaos.2021.111486
    [42] A. Muhammad, F. Muhammad, A. Ali, S. Meng, Modeling and simulation of fractional order COVID-19 model with quarantined-isolated people, Math. Methods Appl. Sci., 44 (2021), 6389–6405. http://doi.org/10.1002/mma.7191 doi: 10.1002/mma.7191
    [43] A. Ul Rehman, R. Singh, Ram, P. Agarwal, Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network, Chaos, Solitons & Fractals, 150 (2021), 111008. http://doi.org/10.1016/j.chaos.2021.111008 doi: 10.1016/j.chaos.2021.111008
    [44] R. Singh, P. Tiwari, S. S. Band, A. Ul Rehman, S. Mahajan, Y. Ding, et al., Impact of quarantine on fractional order dynamical model of Covid-19, Comput. Biol. Med., 151 (2022), 106266. http://doi.org/10.1016/j.compbiomed.2022.106266 doi: 10.1016/j.compbiomed.2022.106266
    [45] P. Agarwal, R. Singh, A. Ul Rehman, Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam–Bashforth–Moulton predictor-corrector scheme, Chaos, Solitons & Fractals, 143 (2021), 110564. http://doi.org/10.1016/j.chaos.2020.110564 doi: 10.1016/j.chaos.2020.110564
    [46] N. Sharma, R. Singh, J. Singh, O. Castillo, Modeling assumptions, optimal control strategies and mitigation through vaccination to zika virus, Chaos, Solitons & Fractals, 150 (2021), 111137. http://doi.org/10.1016/j.chaos.2021.111137 doi: 10.1016/j.chaos.2021.111137
    [47] A. Nursanti, B. L. Kalvein, Modeling of COVID-19 spread with self-isolation at home and hospitalized classes, Results Phys., 36 (2022), 105378. http://doi.org/10.1016/j.rinp.2022.105378 doi: 10.1016/j.rinp.2022.105378
    [48] P. O. Lolika, M. Helikumi, Global stability analysis of a COVID-19 epidemic model with incubation delay, Math. Model. Control, 3 (2023), 23–38. http://doi.org/10.3934/mmc.2023003 doi: 10.3934/mmc.2023003
    [49] J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model, NONLINEAR ANAL-REAL., 26 (2015), 289–305. http://doi.org/10.1016/j.nonrwa.2015.05.014 doi: 10.1016/j.nonrwa.2015.05.014
    [50] P. A. Naik, J. Zu, K. M. Owolabi, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos, Solitons & Fractals, 138 (2020), 109826. http://doi.org/10.1016/j.chaos.2020.109826 doi: 10.1016/j.chaos.2020.109826
    [51] K. M. Owolabi, Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives, Chaos, Solitons & Fractals, 122 (2019), 89–101. http://doi.org/10.1016/j.chaos.2019.03.014 doi: 10.1016/j.chaos.2019.03.014
    [52] K. M. Owolabi, A. Atangana, Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative, Chaos, Solitons & Fractals, 126 (2019), 41–49. http://doi.org/10.1016/j.chaos.2019.06.001 doi: 10.1016/j.chaos.2019.06.001
    [53] Z. U. A. Zafar, K. Rehan, M. Mushtaq, HIV/AIDS epidemic fractional-order model, J. Differ. Equations Appl., 23 (2017), 1298–1315. http://doi.org/10.1080/10236198.2017.1321640 doi: 10.1080/10236198.2017.1321640
    [54] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. http://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
    [55] D. Barros, L. C. Lopes, M. M. S. Pedro, F. Esmi, E. Santos, D. E. Sánchez, The memory effect on fractional calculus: an application in the spread of COVID-19, Comput. Appl. Math., 40 (2021), 1–21. http://doi.org/10.1007/s40314-021-01456-z doi: 10.1007/s40314-021-01456-z
    [56] V.-De-Leó n, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. http://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
    [57] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. http://doi.org/10.1111/j.1365-246x.1967.tb02303.x doi: 10.1111/j.1365-246x.1967.tb02303.x
    [58] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputon type, Lecture Notes in Mathematics, 247 (2010). https://doi.org/10.1007/978-3-642-14574-2 doi: 10.1007/978-3-642-14574-2
    [59] I. Podlubny, Fractional Differential Equations, San Diego: Academic Pres, 1999.
    [60] H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 2433–2439. http://doi.org/10.1007/s11071-011-0157-5 doi: 10.1007/s11071-011-0157-5
    [61] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratioR0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [62] J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, 1976.
    [63] H. Mlyashimbi, E. Gideon, M. Steady, Dynamics of a Fractional-Order Chikungunya Model with Asymptomatic Infectious Class, Computational and Mathematical Methods in Medicine, (2022). http://doi.org/10.1155/2022/5118382 doi: 10.1155/2022/5118382
    [64] A. Dénes, B. A. Gumel, Modeling the impact of quarantine during an outbreak of Ebola virus disease, Infectious Disease Modelling, 4 (2019), 12–27. http://doi.org/10.1016/j.idm.2019.01.003 doi: 10.1016/j.idm.2019.01.003
    [65] A. Aatif, U. Saif, M. A. Khan, The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model, Nonlinear Dynam., (2022), 1–20. http://doi.org/10.1007/s11071-022-07798-5 doi: 10.1007/s11071-022-07798-5
    [66] A. Leon, J. Hyman, Forward and adjoint sensitivity analysis with applications in dynamical systems, Lecture Notes in Linear Algebra and Optimization, (2005).
    [67] N. Faïçal, A. Iván, J. N. Juan, FM. T. Delfim, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos, Solitons & Fractals, 135 (2020), 109846. http://doi.org/10.1016/j.chaos.2020.109846 doi: 10.1016/j.chaos.2020.109846
    [68] F. Wang, L. Cao, X. Song, Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination, Math. Biosci. Eng., 19 (2022), 8035–8056. https://doi.org/10.3934/mbe.2022376 doi: 10.3934/mbe.2022376
    [69] Y. B. Ruhomally, M. Mungur, A. A. H. Khoodaruth, V. Oree, M. A. Dauhoo, Assessing the Impact of Contact Tracing, Quarantine and Red Zone on the Dynamical Evolution of the Covid-19 Pandemic using the Cellular Automata Approach and the Resulting Mean Field System: A Case study in Mauritius, Appl. Math. Model., 111 (2022), 567–589. http://doi.org/10.1016/j.apm.2022.07.008 doi: 10.1016/j.apm.2022.07.008
    [70] C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He, et al., The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis, J. Med. Virol., 92 (2020), 841–848. http://doi.org/10.1002/jmv.25827 doi: 10.1002/jmv.25827
    [71] J. Nelder, R. Mead, A simplex method for function minimization, The computer Journal, 7 (1964), 308–313. http://doi.org/10.1093/comjnl/7.4.308 doi: 10.1093/comjnl/7.4.308
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1279) PDF downloads(169) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog