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Abstract: In this study, a fractional-order model for COVID-19 disease transmission is proposed and studied. First, the disease-free
equilibrium and the basic reproduction number, R0 of the model has been communicated. The local and global stability of the disease-
free equilibrium have been proved using well-constructed Lyapunov functions. Moreover, a normalized sensitivity analysis for the
model parameters has been performed to identify their influence on R0. Real data on COVID-19 disease from Wuhan in China has been
used to validate the proposed model. Finally, a simulation of the model has been performed to determine the effects of memory and
control strategies. Overall, one can note that vaccination and quarantine have the potential to minimize the spread of COVID-19 in the
population.
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1. Introduction

Coronavirus Disease (COVID-19) is a highly contagious
and viral disease that spreads easily from person to
person through contact [1]. It can also be contracted
through respiratory droplets released when an infected
person coughs, sneezes, breathes, sings or talks [2]. The
common symptoms of COVID-19 include fever, cough,
chills, headache, muscles aches, vomiting and diarrhea
[3]. Other symptoms include breathing difficulties, loss of
speech and in severe cases, pneumonia, stroke and blood
clots have been the most common problems in COVID-
19 patients [4]. The disease affects most people with high
blood pressure, cancer, heart failure, overweight, obesity,
liver disease and weakened immune systems [5]. Evidence
from literature shows that old age has high risk of serious
illness from COVID-19 and the risk increases with age [6].

The World Health Organization (WHO) declared COVID-

19 a public health problem on 30th January 2020 [7] and
a pandemic on 11th March 2020 [7, 8]. The first case
report of COVID-19 in Tanzania was declared in Arusha
before spreading to other parts of the country. Then,
on 29th April 2020, the Ministry of Health, Community
Development, Gender, Elderly and Children reported a total
of 480 confirmed cases and 16 deaths from the disease [9].

Public health prevention measures, including banning all
large gatherings, limiting the number of people attending
burials, physical distancing and wearing masks, were
implemented all over the world [10]. Unlike other East
African countries, Tanzania did not enforce lock-down, and
people were allowed to continue with income-generating
activities normally [9]. However, health education
campaigns on prevention measures, such as wearing masks,
hygiene practices, avoiding public gatherings and keeping
physical distance, were intensively encouraged through
mass media and social media [11]. Despite these prevention

http://www.aimspress.com/journal/mmc
http://dx.doi.org/10.3934/mmc.2023017


193

measures, vaccination remains the most powerful tool in
preventing the spread of COVID-19 in the population
[12]. Globally, WHO reported that more than 116, 135, 492
and 2, 581, 976 confirmed cases and deaths, respectively,
and 249, 160, 837 vaccine doses have been administrated
worldwide, including Tanzania [9, 13]. However, the
disease still persists in the population and there are several
cases of resurgences globally. Understanding the dynamics
of COVID-19 and its control strategies is a substantially
important in order to minimize the spread of the disease in
the community [14, 15].

Mathematical models of disease transmission have been
widely studied since the work of Kermack and McKendrick
[16], Greenwood and Yule [17], Ross [18], Bernoulli [19],
Brownlee [20], Soper [21], Greenwood [22] and also for the
details of history in disease modeling (see, [23, 24]) and the
references therein. Mathematical models with fractional-
order differential equations have particulary received greater
attention (see, [25–31]) and are widely used in disease
modeling compared to the integer-order derivatives [32,33].
Fractional-order operators are more accurate in modeling
dynamical systems than classical operators as fractional-
order models allow more degree of freedom [34, 35]. It is
worth mentioning here that fractional-order operators have
more advantages than classical-order operators as fractional-
order models adequately capture hereditary properties, long-
range interactions and memory effects that exist in many
biological systems [32–35]. In contrast, it has been
documented in the literature that models that utilize integer-
order derivatives do not adequately capture hereditary
properties, and memory effects that exist in many biological
systems [33]. Besides, when compared to the classical
integer-order models, fractional-order models provide a
higher level of precision and give a better fit to the actual
data [36].

Recently, Bushnaq et al. [37], Owusu et al. [38], Ahmed
et al. [39], Baba et al. [40], Omame et al. [41] and
Aslam et al. [42] utilized the fractional-order derivatives
to investigate the effect of memory on COVID-19 disease
transmission. Mathematical studies of fractional order
differential equations in disease modeling are also found
in [43–48] and the references therein. For instance, Singh
et al. [44] proposed and studied a fractional order model

using Atangana-Baleanu Caputo sense to investigate the
effect of quarantine on the spread of COVID-19 disease
in the population. In conclusion the authors mentioned
that quarantine of the infected individuals is effective to
minimize the spread of disease in the population. Rehman
et al. [43] formulated a fractional order model using the
Caputo derivative to investigate the dynamics of COVID-
19 and dengue co-infections in the population. The authors
simulated the graphs of both COVID-19 and dengue co-
infection to compare the results in the sense of Caputo,
Caputo-Fabrizio and Atangana-Baleanu. From numerical
simulations, their results demonstrated that Caputo sense
had better results in the form of stability compared to
other operators. Anggriani and Beay [47], formulated a
mathematical model of COVID-19 to study the impact of
self-isolation and hospitalization. The authors performed
a global sensitivity analysis of the model using Latin
Hypercube sampling and partial correlation coefficient
methods. Their results revealed that parameters representing
self-isolation and hospitalization have negative relations.
Lolika and Mlyashimbi [48] proposed and studied a COVID-
19 epidemic model with incubation delay. The authors
computed the basic reproduction number and used to
establish the conditions for global stability of equilibrium
points. Furthermore, the authors concluded that quarantine
of asymptomatic and symptomatic individuals have an
impact on minimizing the spread of COVID-19 in the
population.

Fractional derivatives have many definitions. In this
study, we have chosen to utilize the renowned Caputo
fractional operator due to the fact that, the ability to use
classical initial conditions in the model formulation is the
key benefits of the Caputo fractional derivatives compared
to other fractional operators [49–53]. It is worthwhile to
mention that the Caputo fractional derivative of any constant
is zero. Furthermore, the Caputo fractional operator has
a singular non-kernel, which is missing in other operators
[54–56]. Therefore, we proposed and studied a Caputo
fractional-order model of COVID-19 disease transmission
to assess the effects of vaccination and quarantine in order
to minimize the spread of disease in the population.

The rest of the paper is organized as follows: In Section 2,
the proposed model and its analytical results are presented.
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Results discussion are provided in Section 3. Finally, the
concluding remarks are presented in Section 4.

Figure 1. Model flow chart illustrating the
dynamics of COVID-19.

2. Model formulation

In this section, the Caputo fractional-order derivative has
been used to define the model differential equations for
COVID-19 transmission. The compartments proposed in
this study are used to represent the epidemiological status
of each human population. The proposed model consists
of six sub-divided compartments: susceptible S (t), exposed
E(t), vaccinated V(t), infectious I(t), quarantine Q(t) and
recovered R(t) human populations. Thus, the total human
population is denoted by N(t) which is, N(t) = S (t) +
E(t) + V(t) + Iv(t) + Q(t) + R(t). Throughout the article,
variables and parameters are assumed to be none-negative
and are defined as follows: Λ and ν1 represent the rate
of new recruitment and transition rate from susceptible
to vaccinated classes respectively. Thus; ϕ represents
the efficacy of vaccination for vaccinated susceptible

individuals;
1
α

denotes the average time humans spend in
incubation period; ω represents the rate of quarantine in
the population; following successful treatment, I(t) infected

humans recover from disease after
1
κ

days; µ and γ represent
the human natural mortality and the transition rate of
quarantined people to recovered classes, respectively; d

represents the death rate of infected humans. Additionally,
it is assumed that once the people become aware of
COVID-19 transmission, they change their behavior and
take precautions, such as hand-washing, wearing masks,

keeping social distances and even quarantining themselves.
Thus, the parameter ϵ represents the reduction rate of
COVID-19 transmission of susceptible individuals due to
health education campaigns. Furthermore, it was assumed
that β represents the probability of disease transmission
following the successful contact rate σ between infected and
susceptible individuals.

Our assumptions on the dynamics of COVID-19 in this
study are illustrated in figure 1 and the corresponding model
differential equations are presented in model (2.1):

c
bDθt S (t) = Λθ − (1 − ϵθ)σθβθS (t)I(t) − (νθ1 + µ

θ)S (t),
c
bDθt V(t) = νθ1S (t) − (1 − ϕq)σθβθI(t)V(t) − µθV(t),
c
bDθt E(t) = (1 − ϵθ)σθβθI(t)S (t) + (1 − ϕθ)σθβθI(t)V(t)

−(αθ + µθ)E(t),
c
bDθt Q(t) = ωθαθE(t) − (γθ + µθ)Q(t),
c
bDθt I(t) = (1 − ωθ)αθE(t) − (κθ + µθ + dθ)I(t),
c
bDθt R(t) = γθQ(t) + κθI(t) − µθR(t).

(2.1)

2.1. Preliminaries on the Caputo fractional calculus

We begin by introducing the definition of Caputo
fractional derivative and state the related theorems (see,
[56–59]) that we will utilize to derive important results in
this work.

Definition 2.1. Suppose that θ > 0, t > b, θ, b, t ∈ R, the

Caputo fractional derivative is given by:

c
bDθt f (t)

1
Γ(n − θ)

∫ t

b

f n(ξ)
(t − ξ)θ+1−n dξ, n − 1 < θ, n ∈ N.

(2.2)

Definition 2.2. (Linearity property [56]). Let f (t), g(t) :
[b, d] → R be such that c

bDθt f (t) and c
bDθt g(t) exist almost

everywhere and let c1, c2 ∈ R. Then, c
bDθt (c1 f (t)) +c

b

Dθt (c2g(t)) exists everywhere, and

c
bDθt (c1 f (t) + c2g(t)) = c1

c
bDq

t f (t) + c2
c
bDθt g(t). (2.3)

Definition 2.3. (Caputo derivative of a constant [59]). The

fractional derivative for a constant function f (t) = c is zero,

that is:

c
bDθt c = 0. (2.4)
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Let us consider the following general type of fractional
differential equations involving the Caputo derivative:

c
bDθt x(t) = f (t, x(t)), θ ∈ (0, 1), (2.5)

with initial condition x0 = x(t0).

Definition 2.4. (see [56]). The constant x∗ is an equilibrium

point of the Caputo fractional dynamic system (2.5) if and

only if f (t, x∗) = 0.

In what follows, we present an extension of the Lyapunov
direct method for Caputo type fractional order for nonlinear
systems [56, 60].

Theorem 2.1. (Uniform Asymptotic Stability [56, 60]).

Let x∗ be an equilibrium point for the non-autonomous

fractional order system (2.5) and Ω ⊂ Rn be a domain

containing x∗. Let L : [0,∞) × Ω → R be a continuously

differentiable function such that:

M1(x) ≤ N(t, x(t)) ≤ M2(x),

and:

c
bDθtN(t, x(t)) ≤ M3(x),

for all q ∈ (0, 1) and all x ∈ Ω, where M1(x), M2(x)
andM3(x) are continuous positive definite functions on Ω.

Then, the equilibrium point of system (2.5) is uniformly

asymptotically stable.

The following theorem summarizes a lemma proved in
[56], where a Volterra-type Lyapunov function is obtained
for fractional-order epidemic systems.

Lemma 2.1. (see [56]. Let x(·) be a continuous and

differentiable function with x(t) ∈ R+. Then, for any time

instant t ≥ b, one has:

c
bDθt

(
x(t) − x∗ − x∗ ln

x(t)
x∗

)
≤

(
1 −

x∗

x(t)

)
c
bDθt x(t),

x∗ ∈ R+, ∀θ ∈ (0, 1).

2.2. Model analysis

2.2.1. Non-negativity and boundness of model (2.1)

Theorem 2.2. For the model (2.1), there exists a unique

solution in (0,∞); however, the solution is always positive

for all values of t ≥ 0 and remains in R6
+.

Proof. From the model (2.1), we first show that
R6
+ ={N(t) ∈ R6

+ : N(t) ≥ 0} is a positive invariant set. Then,
we have to demonstrate that each hyper-plane bounding
the positive orthant and the vector field points to R6

+. Now
consider the following: let us assume that there exists a
t∗ > t0 such that N(t∗) = 0, and N(t) < 0 for t ∈ (t∗, t1),
where t1 is sufficiently close to t∗, if N(t∗) = 0, then we have
that,
c
bDθt N(t∗) − Λθ > 0. This implies that c

bDθt N(t) > 0 for all
t ∈ [t∗, t1]. The above discussion shows that the three hyper-
plane bounding the orthants that is the vector field points
to R6

+. This shows that all the solutions of the model (2.1)
remains positive for all t ≥ 0. □

Theorem 2.3. Let Φ(t) = N(t) be the unique solution of the

model (2.1) for all t ≥ 0. Then, the solution Φ(t) is bounded

above, that is,Φ(t) ∈ Ω, whereΩ which is the feasible region

is defined as,

Ω =
{
N(t) ∈ R6

+0 ≤ N(t) ≤ CN .
}

and its interior denoted by int(Ω) is given by,

int(Ω) =
{
N(t) ∈ R6

+0 ≤ N(t) ≤ CN

}
.

Proof. Here, we prove that the solutions of model (2.1) are
bounded for all t ≥ 0. Biologically, the lowest possible value
of each state of model (2.1) is zero. Next, we determine the
upper-bound of states. Based on this discussion, it is easy
to show that the following condition holds for biological
relevance of species. 0 ≤ N(t) ≤ CN . From this condition
one gets:

c
bDθt N(t) ≤ Λθ − µθN(t).

From the Laplace transformation condition one gets:

S θL[N(t)] − S θ−1N(0) ≤
Λθ

S
− µθL[N(t)].
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Collecting the likely terms we have:

L[N(t)] ≤ Λθ
S −1

S θ + µθ
+ N(0)

S q−1

S θ + µθ

= Λθ
S θ−(1+θ)

S θ + µθ
+ N(0)

S θ−1

S q + µθ
.

Using the inverse Laplace transform we have:

N(t) ≤ L−1
{

pθΛθ S θ−(1+θ)

S θ+µθ

}
− N(0)L−1

{
S θ−1

S θ+µθ

}
≤ ΛθtθEq,θ+1(−µθ)tθ + N(0)Eθ,1(−µθ)tθ

≤ Λ
θ

µθ
tθEθ,θ+1(−µθ)tθ + N(0)Eθ,1(−µθ)tθ

≤ Max
{
Λθ

µθ
,N(0)

}(
tθEθ,θ+1(−µθ)tθ + Eθ,1(−µθ)tθ

)
= C
Γ(1) = CN .

Where, CN = Max
{
Λθ

µθ
,N(0)

}
. Therefore, N(t) is bounded

above and this completes the proof.
□

2.3. Disease-free equilibrium and the basic reproduction

number

Since R(t) does not appear in all the equations in model (2.1),
it is sufficient to analyze the solutions of model (2.6) for the
behavior of model differential equations (2.1).

c
bDθt S (t) = Λθ − (1 − ϵθ)σθβθS (t)I(t) − (νθ1 + µ

θ)S (t),
c
bDθt V(t) = νθ1S (t) − (1 − ϕθ)σθβθI(t)V(t) − µθV(t),
c
bDθt E(t) = (1 − ϵθ)σθβθI(t)S (t) + (1 − ϕq)σθβθI(t)V(t)

−(αθ + µθ)E(t),
c
bDθt Q(t) = ωθαθE(t) − (γθ + µθ)Q(t),
c
bDθt I(t) = (1 − ωθ)αθE(t) − (κθ + µθ + dθ)I(t).

(2.6)

In what follows, we compute the threshold quantity, R0

which determines the power of the disease to spread in
the population. The model (2.6) always has a disease-free
equilibrium, E0 given by:

E0 :
(
S 0,V0, E0,Q0, I0,R0

)
=

(
Λθ

νθ1 + µ
θ
,
νθ1Λ

θ

µθ(νθ1 + µ
θ)
, 0, 0, 0

)
.

Following the next generation matrix approach as used
in [31, 61], the non-negative matrix F that denotes the
generation of new infections and the non-singular matrix

V that denotes the disease transfer among compartments
evaluated at E0 are defined as follows:

F =


0 0 (1 − ϵθ)σθβθS 0 + (1 − ϕ)σθβθV0

0 0 0
0 0 0

 , (2.7)

V =


αθ + µθ 0 0
−ωθαθ γθ + µθ 0

−(1 − ωθ)αθ 0 κθ + µθ + dθ

 . (2.8)

Therefore, from (2.7) and (2.8) it can easily be verified that
the basic reproduction number R0 of model (2.1) is:

R0 =
Λθ

νθ1 + µ
θ

(1 − ωθ)αθ

αθ + µθ

( (1 − ϵθ)σθβθ

(κθ + µθ + dθ)
+

1 − ϕθ

κθ + µθ + dθ
ν1
µθ

)
.

The basic reproduction number R0 is defined as the
expected number of secondary cases of humans produced
in a completely susceptible population by one infected
individual during its lifetime as infectious. The terms
Λθ

νθ1 + µ
θ
,
νθ1
µθ1

and
(1 − ωθ)αθ

αθ + µθ
represent the total life span

of humans and the average life span of vaccinated and
quarantined individuals respectively.

2.4. Global stability of the model equilibria

Our goal in this section is to investigate the global stability
of the disease-free equilibrium and the endemic equilibrium
of the model (2.6).

Theorem 2.4. If R0 < 1, the disease free-equilibrium

point of the model (2.1) is locally asymptotically stable and

unstable if R0 > 1.

Proof. To prove theorem (2.4), we evaluate the Jacobian
matrix of the model (2.6) at the disease-free equilibrium and
investigate the behavior of eigenvalues. In what follows, the
Jacobian matrix of the model (2.6) evaluated at the disease
free-equilibrium is given by:

JDFE =


−(νθ1 + µ

θ) 0 0 0 −(1 − ϵθ)σθβθS 0

νθ1 −µq 0 0 −(1 − ϵθ)σθβθV0

0 0 −(αθ + µθ) 0 (1 − ϵθ)σθβθS 0 + (1 − ϕθ)σθβθV0

0 0 ωθαθ −(γθ + µθ) 0
0 0 (1 − ωθ)αθ 0 −(κθ + µθ + dθ)

 .
(2.9)

The first three eigenvalues of matrix (2.9) are λ1 = −(νθ1 +
µθ), λθ2 = −µ

θ, and λ3 = −(γθ+µθ) which are non-positive.
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The remaining two eigenvalues are obtained in the following
matrix;

M =

−(αθ + µθ) (1 − ϵθ)σθβθS 0 + (1 − ϕθ)σθβθV0

(1 − ωθ)αθ κθ + µθ + dθ

 .
(2.10)

It follows that we find the characteristic polynomial of the
matrix (2.10) which is given as follows:

λ2 + (αθ + 2µθ + κθ + dθ)λ + (1 − R0) = 0. (2.11)

Since the coefficients of characteristic polynomial (2.11)
are all non-negative for R0 < 1, we conclude that the
disease-free equilibrium E0 of the model (2.2) is locally
asymptotically stable and this completes the proof. □

Theorem 2.5. The disease-free equilibrium E0 is globally

asymptotically stable if R0 ≤ 1, otherwise is unstable.

Proof. To prove the theorem (2.5), we first evaluate the
model (2.6) at the point E0 and this leads to the following
model;



c
bDθt S (t) = S (t)

(
Λθ(

1
S (t)
−

1
S 0 ) − (1 − ϵθ)βθI(t)

)
,

c
bDθt V(t) = V(t)

(
σθνθ1(

S (t)
V(t)
−

S 0

V0 ) − (1 − ν1)σθI(t)
)
,

c
bDθt E(t) = (1 − ϵθ)

(
S 0 + (S (t) − S 0)

)
+(1 − ν1)βθI(t)

(
V0 + (V(t) − V0)

−(αθ + µθ)E(t)
)
,

c
bDθt Q(t) = ωθαθE(t) − (γθ + µθ)Q(t),
c
bDθt I(t) = (1 − ωθ)αθE(t) − (κθ + µθ + dθ)I(t).

(2.12)

In the followings, we consider the following Lyapunov
function:

L0(t) =

{
S (t) − S 0 − S 0 ln

S (t)
S 0

}
+

{
V(t) − V0 − V0 ln

V(t)
V0

}
+ Q(t) + E(t)

+
(1 − ωθ)αθ + µθ

(1 − ωθ)αθ
I(t).

Taking the derivative of L0(t) along the model (2.12) and
making simplifications, one gets:

c
bDθtL0(t) ≤ Λθ

{
2 −

S (t)
S 0 −

S 0

S

}
−νθ1S 0

{
1 +

S (t)
S 0 −

S (t)
S 0

V0

V(t)
−

V(t)
V0

}
−
{
γq + µθ

}
Q

+

{{
1 − ωθ

}
αθ

{
κθ + µθ + dθ

}}
{
1 − ωθ

}
αq

{
R0 − 1

}
I(t).

Since all the parameters and variables in system (2.13) are
non-negative, it follows that c

bDθtL0(t) < 0 holds if R0 < 1.
Moreover, c

bDθtL0(t) = 0 if and only if S (t) = 0, V(t) = 0,
E(t) = 0, Q(t) = 0, I(t) = 0, for all t ≥ 0. Thus,
L0(t) is Lyapunov function on Ω. Using Lasalle Invariance
principle [62] it implies that every solution of the system
(2.6) approaches the disease-free equilibrium E0 as t → ∞.

Therefore, we conclude that the disease-free equilibrium
of system (2.6) is globally asymptotically stable whenever
R0 ≤ 1. This completes the proof. □

Theorem 2.6. The Model (2.6) has endemic equilibrium E∗

point which is globally asymptotically stable for R0 > 1.

Proof. To prove the theorem (2.6), we consider the
following Lyapunov functional:

L1(t) = A1

{
S (t) − S ∗ − S ∗ ln

S (t)
S ∗

}
+A2

{
V(t) − V∗ − V∗ ln

V(t)
V0

}
+A3

{
E(t) − E∗ − E∗ ln

E(t)
E∗

}
+A4

{
Q(t) − Q∗ − Q∗ ln

Q(t)
Q∗

}
+A5

{
I(t) − I∗ − I∗ ln

I(t)
I∗

}
.

Differentiating L1(t) one gets the following:

c
bDθtL1(t) ≤ A1

(
1 −

S ∗

S

)c

b

Dθt S (t) + A2

(
1 −

V∗

V(t)

)c

b

Dθt V(t)

+A3

(
1 −

E∗

E(t)

)c

b

Dθt E(t) + A4

(
1 −

Q∗

Q(t)

)c

b

Dθt Q(t)

+A5

(
1 −

I∗

I(t)

)c

b

Dθt I(t). (2.13)
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In what follows, we substitute (2.1) in (2.13) and get the
following:

c
bDθtL1(t) ≤ A1

(
1 −

S ∗

S (t)

)(
Λθ − (1 − ϵθ)σθβθS (t)I(t)

−(ηθρθ + ϵθ + µθ)S (t)
)
+ A2

(
1 −

V∗

V(t)

)(
νθ1S (t)

−(1 − ϕθ)σθβθI(t)V(t) − µθV(t)
)

+A3

(
1 −

E∗

E(t)

)(
(1 − ϕθ)σθβθI(t)S (t)

+(1 − ϕθ)σθβθI(t)V(t) − (αθ + µθ)E(t)
)

+A4

(
1 −

Q∗

Q(t)

)(
ωθαθE(t) − (γθ + µθ)Q(t)

)
+A5

(
1 −

I∗

I(t)

)(
(1 − ωθ)αθE(t)

−(κθ + µθ + dθ)I(t)
)
. (2.14)

Setting the model (2.6) at the endemic equilibrium point,

νθ1 + µ
q =

Λθ

S ∗
− (1 − ϵθ)σθβθI∗

µθ =
νθ1S ∗

V∗
− (1 − ν1)θθβθI∗

(αθ + µθ) = (1 − ϵθ)σθβθ
S ∗I∗

E∗
+

(1 − ϕθ)σθI∗V∗

E∗
,

(γθ + µθ) =
ωθαθE∗

Q∗
,

(κθ + µθ + dθ) =
(1 − ωθ)αθE∗

I∗
.

(2.15)
By substituting (2.15) in (2.14) and solving the constants Ai

for i = 1, 2, ...5, one gets the following after simplifications:

c
bDθtL1(t) ≤ νθ1S ∗

(
2 −

S (t)
S ∗
−

S ∗

S (t)

)
+(1 − ωθ)αθE∗

(
3 −

V(t)
V∗
−

S (t)
S ∗

−
S (t)
S ∗

V∗

V

)
+(1 − ϵθ)σθβθ

(
3 −

S (t)
S ∗
−

E(t)
E∗

I∗

I(t)

−
S (t)
S ∗

I(t)
I∗

E∗

E(t)

)
+(1 − ϕθ)σθI∗V∗

(
4 −

S ∗

S (t)
−

S ∗

S (t)
V∗

V(t)

−
E(t)
E∗

I(t)
I∗
−

I(t)
I∗

V(t)
V∗

E∗

E(t)

)
. (2.16)

Since the arithmetic mean is greater than or equal to the
geometrical mean, it follows that, from (2.16) we have the

following: (
2 −

S (t)
S ∗
−

S ∗

S (t)

)
≤ 0. (2.17)

Furthermore, let Φ(z) = 1− z− ln(z) for z > 0. One can note
that Φ(z) ≤ 0 if and only if z = 1. Using the aforementioned
properties of Φ(z), from (2.16) one can note that:(

3 −
V(t)
V∗
−

S (t)
S ∗
−

S (t)
S ∗

V∗

V

)
= Φ

(S (t)
S ∗

V(t)
V∗

)
−

V(t)
V∗
−

S (t)
S ∗

≤ ln
(V(t)

V∗

)
−

V(t)
V∗
+ ln

(S (t)
S ∗

)
−

S (t)
S ∗

≤ 0. (2.18)

(
3 −

S (t)
S ∗
−

E(t)
E∗

I∗

I
−

S (t)
S ∗

I
I∗

E∗

E(t)

)
= Φ

(S (t)
S ∗

E(t)
E∗

I∗

I

)
−

S (t)
S ∗
−

E(t)
E∗

I∗

I(t)

≤ ln
(S (t)

S ∗

)
−

S (t)
S ∗
+ ln

(E(t)
E∗

I∗

I(t)

)
−

E(t)
E∗

I∗

I(t)
≤ 0. (2.19)

(
4 −

S ∗

S (t)
−

S ∗

S (t)
V∗

V(t)
−

E(t)
E∗

I
I∗
−

I(t)
I∗

V(t)
V∗

E∗

E(t)

)
= Φ

( I(t)
I∗

V(t)
V∗

E∗

E(t)

)
+ Φ

(E(t)
E∗

I
I∗

)
−

S ∗

S (t)
−

S ∗

S (t)
V∗

V(t)

≤ ln
(S (t)

S ∗

)
−

S (t)
S ∗
+ ln

( S ∗

S (t)
V∗

V(t)

)
−

S ∗

S (t)
V∗

V(t)
≤ 0. (2.20)

From (2.17), (2.19), (2.18), and (2.20), one can note that
c
bDθtL1(t) ≤ 0 whenever R0 > 1. Therefore, using Lasalle
Invariance principle [62], the model (2.1) has a global
asymptotically stable equilibrium point for all R0 ≥ 1 and
this completes the proof. □

3. Results and discussion

In this section, we perform the numerical simulations of
the model (2.1) to justify the analytical results. Most of
the parameter values that are not available in the literature
have been estimated. Additionally, for the simulation initial
conditions of the model (2.1), was assumed to be S (0) =
900, V(0) = 0, E(0) = 200, Q(0) = 0 and I(0) = 2.
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Using the similar concept in [63], the fractional Adam-
Bashforth-Moulton scheme for the model (2.1) has the
following form:



S (tn+1) = S 0 +
hθ

Γ(θ + 2)
fS

(
tn+1, S p(tn+1),

V p(tn+1), Ep(tn+1), Ip(tn+1),
Qp(tn+1),Rp(tn+1)

)
+

hθ

Γ(θ + 2)

n∑
m=0

am,n+1 fS
(
tm, S (tm),

V(tm), E(tm),
I(tm),Q(tm),R(tm)

)
,

V(tn+1) = V0 +
hθ

Γ(θ + 2)
fV

(
tn+1, S p(tn+1),

V p(tn+1), Ep(tn+1),
Ip(tn+1),Qp(tn+1),Rp(tn+1)

)
+

hq

Γ(θ + 2)

n∑
m=0

am,n+1 fV
(
tm, S (tm),

V(tm), E(tm), I(tm),Q(tm),R(tm)
)
,

E(tn+1) = E0 +
hθ

Γ(θ + 2)
fE

(
tn+1, S p(tn+1),

V p(tn+1), Eθ(tn+1),
Ip(tn+1),Qp(tn+1),Rp(tn+1)

)
+

hθ

Γ(q + 2)

n∑
m=0

am,n+1 fE
(
tm, S (tm),

V(tm), E(tm), I(tm),Q(tm)
)
,R(tm)

I(tn+1) = I0 +
hθ

Γ(θ + 2)
fI
(
tn+1, S p(tn+1),

V p(tn+1), Ep(tn+1),
Ip(tn+1),Qp(tn+1),Rp(tn+1)

)
+

hθ

Γ(θ + 2)

n∑
m=0

am,n+1 fI
(
tm, S (tm),

V(tm), E(tm), I(tm),Q(tm),R(tm)
)
,

Q(tn+1) = Q0 +
hθ

Γ(θ + 2)
fQ

(
tn+1, S p(tn+1),

V p(tn+1), Ep(tn+1),
Ip(tn+1),Qp(tn+1),Rp(tn+1)

)
+

hθ

Γ(θ + 2)

n∑
m=0

am,n+1 fQ
(
tm, S (tm),

V(tm), E(tm), I(tm),Q(tm),R(tm)
)
,



R(tn+1) = R0 +
hθ

Γ(θ + 2)
fR
(
tn+1, S p(tn+1),

V p(tn+1), Ep(tn+1),
Ip(tn+1),Qp(tn+1),Rp(tn+1)

)
+

hθ

Γ(θ + 2)

n∑
m=0

am,n+1 fR
(
tm, S (tm),

V(tm), E(tm), I(tm),Q(tm),R(tm)
)
.

(3.1)

Where:



S p(tn+1) = S 0 +
1
Γθ

n∑
m=0

bm,n+1 fS (tm, S (tm),

V(tm), E(tm), I(tm),Q(tm)),R(tm)

V p(tn+1) = V0 +
1
Γθ

n∑
m=0

bm,n+1 fV (tm, S (tm),

V(tm), E(tm), I(tm),Q(tm)),R(tm)

Ep(tn+1) = E0 +
1
Γθ

n∑
m=0

bm,n+1 fE(tm, S (tm),

V(tm), E(tm), I(tm),Q(tm)),R(tm)

Ip(tn+1) = I0 +
1
Γθ

n∑
m=0

bm,n+1 fI(tm, S (tm),

V(tm), E(tm), I(tm),Q(tm)),R(tm)

Qp(tn+1) = Q0 +
1
Γθ

n∑
m=0

bm,n+1 fQ(tm, S (tm),

V(tm), E(tm), I(tm),Q(tm)),R(tm)

Rp(tn+1) = R0 +
1
Γθ

n∑
m=0

bm,n+1 fR(tm, S (tm),

V(tm), E(tm), I(tm),Q(tm)),R(tm).

(3.2)

In what follows we have:



fS (tm, S (tm),V(tm), E(tm), I(tm),Q(tm),R(tm)) =c
b Dαt S (t),

fV (tm, S (tm),V(tm), E(tm), I(tm),Q(tm),R(tm)) =c
b Dαt V(t),

fE(tm, S (tm),V(tm), E(tm), I(tm),Q(tm),R(tm)) =c
b Dαt E(t),

fI(tm, S (tm),V(tm), E(tm), I(tm),Q(tm),R(tm)) =c
b Dαt I(t),

fQ(tm, S (tm),V(tm), E(tm), I(tm),Q(tm),R(tm)) =c
b Dαt Q(t),

fR(tm, S (tm),V(tm), E(tm), I(tm),Q(tm),R(tm)) =c
b Dαt R(t).

(3.3)
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Additionally, the quantities:

fS (tn+1, S p(tn+1),V p(tn+1), Ep(tn+1), Ip(tn+1),
Qp(tn+1),Rp(tn+1)),
fV (tn+1, S p(tn+1),V p(tn+1), Ep(tn+1), Ip(tn+1),
Qp(tn+1),Rp(tn+1)),
fE(tn+1, S p(tn+1),V p(tn+1), Ep(tn+1), Ip(tn+1),
Qp(tn+1),Rp(tn+1)),
fI(tn+1, S p(tn+1),V p(tn+1), Ep(tn+1), Ip(tn+1),
Qp(tn+1),Rp(tn+1)),
fQ(tn+1, S p(tn+1),V p(tn+1), Ep(tn+1), Ip(tn+1),
Qp(tn+1),Rp(tn+1)),
fR(tn+1, S p(tn+1),V p(tn+1), Ep(tn+1), Ip(tn+1),
Qp(tn+1),Rp(tn+1)).

(3.4)

are the derivatives from (3.3) at the point tn+1, n =

1, 2, 3, ...m..

Table 1. Parameters and values.

Symbol Description Value Units Source
Λ Per capita human recruitment rate 11826 day −1 [64]
d Disease induced death rate day −1 0.0413 [9]
µ Natural death rate day −1 0.2 [9]
β Force of infections day −1 Fitted
α Incubation period day −1 0.5171 [65]
σ Average per capita contact rate day −1 Fitted
ϕ Efficacy rate of vaccination day −1 0:854 [64]
ν1 Vaccination rate day −1 0.0313 [65]
γ Recovery rate day−1 0.362 [64]
ϵ Human awareness rate day−1 Vary Assumed
κ Treatment rate of infected individuals unit-less Vary Assumed
ω Quarantine rate of suspected humans unit-less Vary Assumed

3.1. Sensitivity analysis of the model

In this section, the sensitivity analysis of the model (2.1)
has been performed to demonstrate the influence of each
parameter on the magnitude of the threshold quantity R0.
Most of the parameters used in this study have been drawn
from literature and some are estimated using reasonable
ranges for the purpose of simulation.

Definition 3.1. (See, [66]) The normalized sensitivity index

of R0, which depends on differentiability of parameter, ω is

defined as follows:

ΨR0
ω =

∂R0

∂ω
×
ω

R0
(3.5)

Figure 2. Sensitivity analysis of the model (2.1).

Figure 2 demonstrates the relationship between the basic
reproduction number R0 and the model parameters of the
model (2.1). Overall, one can note that the model parameters
β, γ, σ and Λ have a positive influence on the R0, that is
whenever they are increased, the size of R0 increases. On
the other-hand, parameters with negative index values have
a negative influence on R0, that is, whenever they increased,
the value of R0 decreases.

3.2. Effect of vaccination and quarantine

3.3. Parameter estimation and model validation using real

data

In this section, we use the daily cases of COVID-19 from
Wuhan in China as reported in [67] and estimate the
parameters (β, σ) that minimize the deviation of real data
from prediction of model system (2.1). The main advantage
of fractional-order differential equation is that the order
of fractional can be any real positive number, so one can
choose the one that has best fit of real data to the model and
predict the future evolution of the disease in the population.
Therefore, in this study, we use both the least squares and
Nelder mead algorithm methods as presented in [71] to fit
and estimate the parameters (d, β, θ) of the model (2.1). The
real data used in this study are daily reported cases as shown
in table (2), and the commutative new infections predicted
by the model (2.1) is obtained using the equation (3.6)

c
bDθt C(t) = (1 − ϵ)σθβθI(t)S (t) + (1 − ϕ)σθβθI(t)V(t)(3.6)
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(a)

(b)

(c)

Figure 3. Effects of varying (a) rate of treatment
of infected humans with COVID-19 modeled by
parameter κ on R0, (b) rate of quarantine for
suspected individuals with COVID 19 modeled by
parameter ω on R0, and (c) rate of vaccination for
susceptible individuals modeled by parameter ν1
on R0. One can see that increasing treatment of
infected, vaccination of susceptible and quarantine
of suspected individuals reduce the spread of
COVID 19 disease in the population.

(a)

(b)

Figure 4. Effects of varying (a) rate of incubation
period modeled by parameter α on R0, (b) contact
rate between susceptible and infected individuals
modeled by parameter σ on R0. The results show
that increase in the incubation period and contact
rate between susceptible and infected individuals,
the disease remains persistent in the population.

Figure 5. Mesh plot of R0 as the function of
treatment and quarantine of individuals. Overall,
the results show that both treatment and quarantine
of humans have the potential to reduce the spread
of COVID-19 disease in the population.
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Figure 6. Latin hyper sampling of R0 to
quarantine rate. The quarantine rate was varied
across the possible values.

Figure 7. Contour plot of R0 as the
function of vaccination rate ν1 and quarantine
of suspected humans with COVID-19 disease
infection. Overall, one can note that varying
both vaccination and quarantine decrease the
magnitude of R0. Prior studies also reported
similar results (see, [68–70]). In particular,
they argue that combination of contact tracing,
quarantine, and longer duration of vaccine
immunity can effectively reduce the spread of
COVID-19 in the population. Therefore, it is
important to quantify their combined effects in
minimize the spread of COVID-19 disease in the
population.

We use the following function to compute the best fitting:

F : R2
(β,σ) → R(β,σ) (3.7)

where β, σ are parameters such that:

(1) For a given (β, σ), we numerically solve the system
(2.1) to get a solution Ŷi(t) = (Ŝ , V̂ , Ê, Q̂, Î, R̂ which is
an estimation of daily reported cases Y(t) of COVID-19
from Wuhan in China.

(2) Set t0 = 1 (the fitting process starts in day 1) and for
t = 2, 3, ..., 23, corresponding to daily in where data are
available, evaluate the computed numerical solution for
I(t); that is., Î(1), Î(2), Î(3),....., Î(23).

(3) Compute the root mean square (RMSE) of the
difference between Î(1), Îh(2), ...., Î(23) and real data.
This function F returns the root-mean-square error
(RMSE) where:

RMSE =

√√√
1
n

23∑
k=1

(I(k) − Î(k))2, (3.8)

(4) Determine a global minimum for the RMSE using
Nelder-Mead algorithm. The function F takes values
in R2 and returns a positive real number.
Using the formula (3.8), we computed the RMS E that
measures the closeness of the model prediction to the
real data and was found to be 0.1186. This shows that
the system (2.1) has a good fit to the daily reported
cases of COVID-19. On performing the fitting process
we set the following initial conditions S (0) = 9999,
V(0) = 7990, E(0) = 10, I(0) = 5, Q(0) = 5
R(0) = 3 and the model parameters are in Table
(1). Note that since the fractional-order is any positive
real number θ ∈ (0, 1], one can choose the one that
better fits the model to the real data. Based on this
assertion, the fractional-order θ were assumed to be
0.59, 0.6, 0.61, 0.62 and 0.63 that had a better fit of
model to the real data reported in [67].

3.4. Model fitting and validation with real data

4. Concluding remarks

The outbreak of the COVID-19 depends on the close
contact between infected and susceptible individuals in the
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(a)

(b)

(c)

Figure 8. Model fitting to the real data of COVID-
19 cases per day as reported in [67]. The circle line
in figures (a) and (b) represent the real data while
the smooth line denotes the model prediction at
θ = 0.59, θ = 0.6, θ = 0.61 and θ = 0.62, θ = 0.63.
Overall, the results demonstrate that the propose
model fits well with the reported cases of COVID-
19 from Wuhan in China. Furthermore, the plot
of order of the derivatives θ against sum of square
errors in Figure (c) has been performed and the
results show that the model has good predictions
at θ = 0.61.

Table 2. The daily cases of COVID-19 from
Wuhan in China for 23 days as reported in [67].

Day 1 2 3 4 5 6 7 8
Cases 6 12 19 25 31 38 44 60
Day 9 10 11 12 13 14 15 16

Cases 80 131 259 3839 469 688 776 1776
Day 17 18 19 20 21 22 23

Cases 1460 1739 1984 2101 2590 2827 3233

(a)

(b)

Figure 9. Simulations of time series against
residuals on reported cases of COVID-19 disease
from Wuhan in China. Overall, the results
demonstrate that the residuals exhibit random
pattern and implying that the proposed model is a
good fit to the reported cases of COVID-19 disease
from Wuhan in China.
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(a)

(b)

Figure 10. Simulation of model (2.1) at R0 =

0.1052, ω = 0.6 and ν1 = 0.01 to show
the convergence of infected and quarantined
individuals to the disease free-equilibrium point.
Overall, one can note that as the memory effect
θ decreases from unit the disease dies out in the
population after 20 days.

(a)

(b)

Figure 11. Simulation of model (2.1) to show the
solution profiles. Figure (a) and (b) illustrates the
simulation of model (2.1) with ν1 = 0 to show the
dynamics of the disease in the population. Overall,
one can note that in the absence of vaccination
(ν1 = 0) the COVID-19 disease persists in the
population for longer periods before converging
to the disease-free equilibrium point compared to
that in Figure 10.
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community. Vaccination and quarantine are proposed as the
most effective control strategies that minimize the spread
of the COVID-19 disease in the population. In this study,
a fractional-order model for COVID-19 has been proposed
and studied to assess the effects of the aforementioned
control strategies. To analyze the model, the important
threshold parameter, R0, has been computed to investigate
the stability analysis of the steady states of the model.
The results from the analysis demonstrated that both the
disease-free equilibrium and endemic equilibrium points are
globally stable whenever the basic reproduction number is
less and greater than unity, respectively. A Normalized
sensitivity index of the basic reproduction number was
been performed to establish the relationship between the
threshold and model parameters. Overall, one can note that
model parameters with a positive index increased the disease
persistence in the population. Furthermore, to support the
analytical results, matlab software was used to simulate
the proposed model and the results demonstrated that both
vaccination and quarantine have the potential to minimize
the spread of disease in the population. In particular, the
disease can die out from the population by vaccinating
70% susceptible people and quarantine 60% of suspected
individuals. Besides, real data of COVID-19 disease from
Wuhan city in China has been used to fit and validate the
proposed model. From the numerical findings, it can be
deduced70% that the model fits well with reported cases of
COVID-19 in China. Additional simulation of the model
to assess the effect of memory on the spread of COVID-19
disease has been performed and the results demonstrated that
memory effect has an influence on the spread of COVID-19
in the population. In future, the proposed model presented
in this study will be improved by incorporating time delay
and assessing its effect on the spread of COVID-19 disease
in the population.
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