Research article

Dynamical analysis of an anthrax disease model in animals with nonlinear transmission rate

  • Received: 25 May 2023 Revised: 25 May 2023 Accepted: 11 October 2023 Published: 22 December 2023
  • Anthrax is a bacterial infection caused by Bacillus anthracis, primarily affecting animals and occasionally affecting humans. This paper presents two compartmental deterministic models of anthrax transmission having vaccination compartments. In both models, a nonlinear ratio-dependent disease transmission function is employed, and the latter model distinguishes itself by incorporating fractional order derivatives, which adds a novel aspect to the study. The basic reproduction number $ \mathcal{R}_0 $ of the epidemic is determined, below which the disease is eradicated. It is observed that among the various parameters, the contact rate, disease-induced mortality rate, and rate of animal recovery have the potential to influence this basic reproduction number. The endemic equilibrium becomes disease-free via transcritical bifurcations for different threshold parameters of animal recovery rate, disease-induced mortality rate and disease transmission rate, which is validated by utilizing Sotomayor's theorem. Numerical simulations have revealed that a higher vaccination rate contributes to eradicating the disease within the ecosystem. This can be achieved by effectively controlling the disease-induced death rate and promoting animal recovery. The extended fractional model is analyzed numerically using the Adams-Bashforth-Moulton type predictor-corrector scheme. Finally, it is observed that an increase in the fractional order parameter has the potential to reduce the time duration required to eradicate the disease from the ecosystem.

    Citation: Ankur Jyoti Kashyap, Arnab Jyoti Bordoloi, Fanitsha Mohan, Anuradha Devi. Dynamical analysis of an anthrax disease model in animals with nonlinear transmission rate[J]. Mathematical Modelling and Control, 2023, 3(4): 370-386. doi: 10.3934/mmc.2023030

    Related Papers:

  • Anthrax is a bacterial infection caused by Bacillus anthracis, primarily affecting animals and occasionally affecting humans. This paper presents two compartmental deterministic models of anthrax transmission having vaccination compartments. In both models, a nonlinear ratio-dependent disease transmission function is employed, and the latter model distinguishes itself by incorporating fractional order derivatives, which adds a novel aspect to the study. The basic reproduction number $ \mathcal{R}_0 $ of the epidemic is determined, below which the disease is eradicated. It is observed that among the various parameters, the contact rate, disease-induced mortality rate, and rate of animal recovery have the potential to influence this basic reproduction number. The endemic equilibrium becomes disease-free via transcritical bifurcations for different threshold parameters of animal recovery rate, disease-induced mortality rate and disease transmission rate, which is validated by utilizing Sotomayor's theorem. Numerical simulations have revealed that a higher vaccination rate contributes to eradicating the disease within the ecosystem. This can be achieved by effectively controlling the disease-induced death rate and promoting animal recovery. The extended fractional model is analyzed numerically using the Adams-Bashforth-Moulton type predictor-corrector scheme. Finally, it is observed that an increase in the fractional order parameter has the potential to reduce the time duration required to eradicate the disease from the ecosystem.



    加载中


    [1] J. G. Wright, C. P. Quinn, S. Shadomy, N. Messonnier, Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009, MMWR Recomm. Rep., 59 (2010), 1–30.
    [2] A. N. Survely, B. Kvasnicka, R. Torell, Anthrax: a guide for livestock producers, Western Beef Resource Committee, 2001. Available from: https://extension.colostate.edu/docs/pubs/ag/anthrax-guide.pdf.
    [3] F. Baldacchino, V. Muenworn, M. Desquesnes, F. Desoli, T. Charoenviriyaphap, G. Duvallet, Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review, Parasite, 20 (2013), 26. https://doi.org/10.1051/parasite/2013026 doi: 10.1051/parasite/2013026
    [4] S. S. Lewerin, M. Elvander, T. Westermark, L. N. Hartzell, A. K. Norström, S. Ehrs, et al., Anthrax outbreak in a Swedish beef cattle herd-1st case in 27 years: case report, Acta. Vet. Scand., 52 (2010), 7. https://doi.org/10.1186/1751-0147-52-7 doi: 10.1186/1751-0147-52-7
    [5] K. M. Good, C. Marobela, A. M. Houser, A report of anthrax in cheetahs (Acinonyx jubatus) in Botswana, J. S. Afr. Vet. Assoc., 76 (2005), 186. https://doi.org/10.10520/EJC99644 doi: 10.10520/EJC99644
    [6] T. Lembo, K. Hampson, H. Auty, C. A. Beesley, P. Bessell, C. Packer, et al., Serologic surveillance of anthrax in the Serengeti ecosystem, Tanzania, 1996–2009, Emerg. Infect. Dis., 17 (2011), 387–394. https://doi.org/10.3201/eid1703.101290 doi: 10.3201/eid1703.101290
    [7] World Health Organization, Food and Agriculture Organization of the United Nations & World Organisation for Animal Health, In: Anthrax in humans and animals, 4 Eds., World Health Organization 2008. Available from: https://apps.who.int/iris/handle/10665/97503.
    [8] N. K. Thapa, W. K. Tenzin, T. Dorji, D. J. Migma, C. K. Marston, A. R. Hoffmaster, et al., Investigation and control of anthrax outbreak at the human-animal interface, Bhutan, 2010, Emerg. Infect. Dis., 20 (2014), 1524–1526. https://doi.org/10.3201/eid2009.140181 doi: 10.3201/eid2009.140181
    [9] B. Ahmed, Y. Sultana, D. S. M. Fatema, K. Ara, N. Begum, S. M. Mostanzid et al., Anthrax: an emerging zoonotic disease in Bangladesh, Bangladesh J. Med. Microbiol., 4 (2010), 46–50. https://doi.org/10.3329/bjmm.v4i1.8470 doi: 10.3329/bjmm.v4i1.8470
    [10] P. Nayak, S. V. Sodha, K. F. Laserson, A. K. Padhi, B. K. Swain, S. S. Hossain, et al., A cutaneous Anthrax outbreak in Koraput district of Odisha-India 2015, BMC Public Health, 470 (2019), 470. https://doi.org/10.1186/s12889-019-6787-0 doi: 10.1186/s12889-019-6787-0
    [11] A. J. Lotka, Elements of physical biology, Baltimore: Williams & Wilkins, 1925.
    [12] V. Volterra, Variations and fluctuations of a number of individuals in animal species living together, ICES J. Mar. Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
    [13] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [14] J. K. K Asamoah, Z. Jin, G. Q. Sun, M. Y. Li, A deterministic model for Q fever transmission dynamics within dairy cattle herds: using sensitivity analysis and optimal controls, Comput. Math. Methods Med., 2020 (2020), 6820608. https://doi.org/10.1155/2020/6820608 doi: 10.1155/2020/6820608
    [15] J. K. K. Asamoah, Z. Jin, G. Q. Sun, Non-seasonal and seasonal relapse model for Q fever disease with comprehensive cost-effectiveness analysis, Results Phys., 22 (2021), 103889. https://doi.org/10.1016/j.rinp.2021.103889 doi: 10.1016/j.rinp.2021.103889
    [16] A. Abidemi, J. Ackora-Prah, H. O. Fatoyinbo, J. K. K. Asamoah, Lyapunov stability analysis and optimization measures for a dengue disease transmission model, Phys. A, 602 (2022), 127646. https://doi.org/10.1016/j.physa.2022.127646 doi: 10.1016/j.physa.2022.127646
    [17] A. Abidemi, H. O. Fatoyinbo, J. K. K. Asamoah, Analysis of dengue fever transmission dynamics with multiple controls: a mathematical approach, 2020 International Conference on Decision Aid Sciences and Application, 2020,971–978. https://doi.org/10.1109/DASA51403.2020.9317064
    [18] J. K. K. Asamoah, E. Yankson, E. Okyere, G. Q. Sun, Z. Jin, R. Jan, et al., Optimal control and cost-effectiveness analysis for dengue fever model with asymptomatic and partial immune individuals, Results Phys., 31 (2021), 104919. https://doi.org/10.1016/j.rinp.2021.104919 doi: 10.1016/j.rinp.2021.104919
    [19] B. D Hahn, P. R. Furniss, A mathematical model of anthrax epizootic in the Kruger National Park, Appl. Math. Modell., 5 (1981), 130–136. https://doi.org/10.1016/0307-904X(81)90034-2 doi: 10.1016/0307-904X(81)90034-2
    [20] B. D Hahn, P. R Furniss, A deterministic model of anthrax epizootic: threshold results, Ecol. Modell., 20 (1983), 233–241. https://doi.org/10.1016/0304-3800(83)90009-1 doi: 10.1016/0304-3800(83)90009-1
    [21] A. Friedman, A. A. Yakubu, Anthrax epizootic and migration: persistence or extinction, Math Biosci., 241 (2013), 137–144. https://doi.org/10.1016/j.mbs.2012.10.004 doi: 10.1016/j.mbs.2012.10.004
    [22] S. Mushayabasa, Global stability of an anthrax model with environmental decontamination and time delay, Discrete Dyn. Nat. Soc., 2015 (2015), 573146. https://doi.org/10.1155/2015/573146 doi: 10.1155/2015/573146
    [23] S. Mushayabasa, T. Marijani, M. Masocha, Dynamical analysis and control strategies in modeling anthrax, Comput. Appl. Math., 36 (2017), 1333–1348. https://doi.org/10.1007/s40314-015-0297-1 doi: 10.1007/s40314-015-0297-1
    [24] G. Kimathi, M. Wainaina, Analysis of transmission dynamics of anthrax in animals: a modeling approach, J. Sci. Res. Rep., 23 (2019), 1–9. https://doi.org/10.9734/jsrr/2019/v23i130111 doi: 10.9734/jsrr/2019/v23i130111
    [25] S. Osman, D. Otoo, C. Sebil, O. D. Makinde, Bifurcation, sensitivity and optimal control analysis of modelling anthrax-listeriosis co-dynamics, Commun. Math. Biol. Neurosci., 2020 (2020), 98. https://doi.org/10.28919/cmbn/5161 doi: 10.28919/cmbn/5161
    [26] S. Rezapour, S. Etemad, H. Mohammadi, Mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals, Adv. Differ. Equations, 2020 (2020), 481. https://doi.org/10.1186/s13662-020-02937-x doi: 10.1186/s13662-020-02937-x
    [27] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [28] A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. Venkatramanan, A. Vullikanti, Mathematical models for COVID-19 pandemic: a comparative analysis, J. Indian Inst. Sci., 100 (2020), 793–807. https://doi.org/10.1007/s41745-020-00200-6 doi: 10.1007/s41745-020-00200-6
    [29] M. E. Alexander, S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75–96. https://doi.org/10.1016/j.mbs.2004.01.003 doi: 10.1016/j.mbs.2004.01.003
    [30] G. Li, Z. Jin, Global stability of an SEI epidemic model, Chaos Solitons Fract., 21 (2004), 925–931. https://doi.org/10.1016/j.chaos.2003.12.031 doi: 10.1016/j.chaos.2003.12.031
    [31] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equations, 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
    [32] J. Zhang, Z. Ma, Global dynamics of an SEIRS epidemic model with saturating contact rate, Math. Biosci., 185 (2003), 15–32. https://doi.org/10.1016/s0025-5564(03)00087-7 doi: 10.1016/s0025-5564(03)00087-7
    [33] Y. Jin, W. Wang, S. Xiao, An SIRS model with a nonlinear incidence rate, Chaos Solitons Fract., 34 (2007), 1482–1497. https://doi.org/10.1016/j.chaos.2006.04.022 doi: 10.1016/j.chaos.2006.04.022
    [34] G. Birkhoff, G. C. Rota, Ordinary differential equations, 4 Eds, John Wiley & Sons, Inc., 1989.
    [35] R. M. Anderson, R. M. May, Infectious diseases of humans, Oxford: Oxford University Press, 1991.
    [36] O. Diekmann, J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases, John Wiley & Sons, Inc., 2000.
    [37] P. van den Driessche, J. Watmough, Further notes on the basic reproduction number, Springer, 2008. https://doi.org/10.1007/978-3-540-78911-6_6
    [38] M. G. Roberts, J. A. P. Heesterbeek, Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology, J. Math. Biol., 66 (2013), 1045–1064. https://doi.org/10.1007/s00285-012-0602-1 doi: 10.1007/s00285-012-0602-1
    [39] L. Perko, Differential equations and dynamical systems, Springer Science & Business Media, 2013.
    [40] S. P. Ansari, S. K. Agrawal, S. Das, Stability analysis of fractional-order generalized chaotic susceptible–infected–recovered epidemic model and its synchronization using active control method, Pramana, 84 (2015), 23–32. https://doi.org/10.1007/s12043-014-0830-6 doi: 10.1007/s12043-014-0830-6
    [41] M. A. Khan, M. Ismail, S. Ullah, M. Farhan, Fractional-order SIR model with generalized incidence rate, AIMS Math., 5 (2020), 1856–1880. https://doi.org/10.3934/math.2020124 doi: 10.3934/math.2020124
    [42] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta, 45 (2006), 765–771. https://doi.org/10.1007/s00397-005-0043-5 doi: 10.1007/s00397-005-0043-5
    [43] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [44] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2015), 73–85. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [45] M. Caputo, M. Fabricio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85, https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [46] J. Huo, Z. Hongyong, Z. Linhe, The effect of vaccines on backward bifurcation in a fractional-order HIV model, Nonlinear Anal. 26 (2015), 289–305. https://doi.org/10.1016/j.nonrwa.2015.05.014
    [47] A. J. Kashyap, D. Bhattacharjee, H. K. Sarmah, A fractional model in exploring the role of fear in mass mortality of pelicans in the Salton Sea, An Int. J. Optim. Control, 11 (2021), 28–51. https://doi.org/10.11121/ijocta.2021.1123 doi: 10.11121/ijocta.2021.1123
    [48] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Modell. Dyn. Syst., 14 (2008), 147–175. https://doi.org/10.1080/13873950701742754 doi: 10.1080/13873950701742754
    [49] R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 16. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
    [50] S. Osman, O. D. Makinde, D. M. Theuri, Mathematical modelling of transmission dynamics of anthrax in human and animal population, Math. Theory Modell., 8 (2018), 47–67.
    [51] S. Osman, D. Otoo, O. D. Makinde, Modeling anthrax with optimal control and cost effectiveness analysis, Appl. Math., 11 (2020), 255–275, https://doi.org/10.4236/am.2020.113020 doi: 10.4236/am.2020.113020
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1195) PDF downloads(184) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog