This paper was concerned with the problem of filter design for the continuous-discrete system in the Takagi-Sugeno (T-S) fuzzy model. In a known finite frequency (FF) domain, an FF $ H_\infty $ performance was defined for the nonlinear continuous-discrete system. With the designed filter, sufficient conditions were then established for the filtering error system to be asymptotically stable and having a prescribed FF $ H_\infty $ performance. After that, a systematic method for the filter design was proposed. Finally, an example was provided to check effectiveness of the derived results.
Citation: Zhaoxia Duan, Jinling Liang, Zhengrong Xiang. Filter design for continuous-discrete Takagi-Sugeno fuzzy system with finite frequency specifications[J]. Mathematical Modelling and Control, 2023, 3(4): 387-399. doi: 10.3934/mmc.2023031
This paper was concerned with the problem of filter design for the continuous-discrete system in the Takagi-Sugeno (T-S) fuzzy model. In a known finite frequency (FF) domain, an FF $ H_\infty $ performance was defined for the nonlinear continuous-discrete system. With the designed filter, sufficient conditions were then established for the filtering error system to be asymptotically stable and having a prescribed FF $ H_\infty $ performance. After that, a systematic method for the filter design was proposed. Finally, an example was provided to check effectiveness of the derived results.
[1] | M. S. Branicky, V. S. Borkar, S. K. Mitter, A unified framework for hybrid control: model and optimal control theory, IEEE Trans. Autom. Control, 43 (1998), 31–45. https://doi.org/10.1109/9.654885 doi: 10.1109/9.654885 |
[2] | S. Knorn, A two-dimensional systems stability analysis of vehicle platoons, Ph. D. thesis, National University of Ireland Maynooth, 2013. |
[3] | L. Wu, H. Gao, C. Wang, Quasi sliding mode control of differential linear repetitive processes with unknown input disturbance, IEEE Trans. Ind. Electron., 58 (2011), 3059–3068. https://doi.org/10.1109/TIE.2010.2072891 doi: 10.1109/TIE.2010.2072891 |
[4] | D. A. Bristow, M. Tharayil, A. G. Alleyne, A survey of iterative learning control, IEEE Control Syst. Mag., 26 (2006), 96–114. https://doi.org/10.1109/MCS.2006.1636313 doi: 10.1109/MCS.2006.1636313 |
[5] | L. Wang, W. Wang, J. Gao, W. Chen, Stability and robust stabilization of 2-D continuous-discrete systems in Roesser model based on KYP lemma, Multidimens. Syst. Signal Process., 28 (2017), 251–264. https://doi.org/10.1007/s11045-015-0355-2 doi: 10.1007/s11045-015-0355-2 |
[6] | G. Chesi, R. H. Middleton, LMI-based fixed order output feedback synthesis for two-dimensional mixed continuous-discrete-time systems, IEEE Trans. Autom. Control, 63 (2018), 960–972. https://doi.org/10.1109/TAC.2017.2727685 doi: 10.1109/TAC.2017.2727685 |
[7] | X. Wang, Y. Sun, D. Ding, Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques, Int. J. Network Dyn. Intell., 1 (2022), 85–98. https://doi.org/10.53941/ijndi0101008 doi: 10.53941/ijndi0101008 |
[8] | X. Liu, S. Zhong, Stability analysis of delayed switched cascade nonlinear systems with uniform switching signals, Math. Modell. Control, 1 (2021), 90–101. https://doi.org/10.3934/mmc.2021007 doi: 10.3934/mmc.2021007 |
[9] | Y. Su, H. Cai, J. Huang, The cooperative output regulation by the distributed observer approach, Int. J. Network Dyn. Intell., 1 (2022), 20–35. https://doi.org/10.53941/ijndi0101003 doi: 10.53941/ijndi0101003 |
[10] | T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modelling and control, IEEE Trans. Syst. Man Cybern., SMC-15 (1985), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399 |
[11] | G. Feng, Analysis and synthesis of fuzzy control systems: a model-based approach, Boca Raton: CRC Press, Inc., 2010. |
[12] | J. Wang, J. Liang, C. T. Zhang, Dissipativity analysis and synthesis for positive Roesser systems under the switched mechanism and Takagi-Sugeno fuzzy rules, Inf. Sci., 546 (2021), 234–252. https://doi.org/10.1016/j.ins.2020.08.034 doi: 10.1016/j.ins.2020.08.034 |
[13] | J. Liang, J. Wang, T. Huang, $ l_1 $ filtering for continuous-discrete T-S fuzzy positive Roesser model, J. Franklin Inst., 355 (2018), 7281–7305. https://doi.org/10.1016/j.jfranklin.2018.07.017 doi: 10.1016/j.jfranklin.2018.07.017 |
[14] | Y. Luo, Z. Wang, J. Liang, G. Wei, F. E. Alsaadi, $ H_{\infty} $ control for 2-D fuzzy systems with interval time-varying delays and missing measurements, IEEE Trans. Cybern., 47 (2017), 365–377. https://doi.org/10.1109/TCYB.2016.2514846 doi: 10.1109/TCYB.2016.2514846 |
[15] | L. Li, W. Wang, X. Li, New approach to $ H_{\infty} $ filtering of two-dimensional T-S fuzzy systems, Int. J. Robust Nonlinear Control, 23 (2013), 1900–2012. https://doi.org/10.1002/rnc.2866 doi: 10.1002/rnc.2866 |
[16] | X. Ren, T. Hou, Pareto optimal filter design with hybrid $ H_2 / H_{\infty} $ optimization, Math. Modell. Control, 3 (2023), 80–87. https://doi.org/10.3934/mmc.2023008 doi: 10.3934/mmc.2023008 |
[17] | Y. Chen, W. Zhang, H. Gao, Finite frequency $ H_{\infty} $ control for building under earthquake excitation, Mechatronics, 20 (2010), 128–142. https://doi.org/10.1016/j.mechatronics.2009.11.001 doi: 10.1016/j.mechatronics.2009.11.001 |
[18] | T. Iwasaki, S. Hara, Generalized KYP lemma: unified frequency domain inequalities with design applications, IEEE Trans. Autom. Control, 50 (2005), 41–59. https://doi.org/10.1109/TAC.2004.840475(410) doi: 10.1109/TAC.2004.840475(410) |
[19] | X. Li, H. Gao, C. Wang, Generalized Kalman-Yakubovich-Popov lemma for 2-D FM LSS model, IEEE Trans. Autom. Control, 57 (2012), 3090–3103. https://doi.org/10.1109/TAC.2012.2200370 doi: 10.1109/TAC.2012.2200370 |
[20] | L. Wang, W. Wang, G. Zhang, W. Chen, Generalised Kalman-Yakubovich-Popov lemma with its application in finite frequency positive realness control for two-dimensional continuous-discrete systems in the Roesser model form, IET Control Theory Appl., 9 (2015), 1676–1682. https://doi.org/10.1049/iet-cta.2014.0875 doi: 10.1049/iet-cta.2014.0875 |
[21] | H. Gao, X. Li, $ H_{\infty} $ filtering for discrete-time state-delayed systems with finite frequency specifications, IEEE Trans. Autom. Control, 56 (2011), 2935–2941. https://doi.org/10.1109/TAC.2011.2159909 doi: 10.1109/TAC.2011.2159909 |
[22] | G. Wang, H. Xu, L. Wang, J. Yao, Robust $ H_{\infty} $ filtering for uncertain two-dimensional continuous-discrete state-delay systems in finite frequency domains, IET Control Theory Appl., 12 (2018), 2316–2327. https://doi.org/10.1049/iet-cta.2018.5671 doi: 10.1049/iet-cta.2018.5671 |
[23] | T. Iwasaki, S. Hara, A. L. Fradkov, Time domain interpretations of frequency domain inequalities on (semi) finite ranges, Syst. Control Lett., 54 (2005), 681–691. https://doi.org/10.1016/j.sysconle.2004.11.007 doi: 10.1016/j.sysconle.2004.11.007 |
[24] | D. W. Ding, G. H. Yang, Fuzzy filter design for nonlinear systems in finite-frequency domain, IEEE Trans. Fuzzy Syst., 18 (2010), 935–945. https://doi.org/10.1109/TFUZZ.2010.2058807 doi: 10.1109/TFUZZ.2010.2058807 |
[25] | Z. Duan, J. Shen, I. Ghous, J. Fu, $ H_{\infty} $ filtering for discrete-time 2D T-S fuzzy systems with finite frequency disturbances, IET Control Theory Appl., 13 (2019), 1983–1994. https://doi.org/10.1049/iet-cta.2018.5918 doi: 10.1049/iet-cta.2018.5918 |
[26] | M. Wang, G. Feng, J. Qiu, Finite-frequency fuzzy output feedback controller design for Roesser-type two-dimensional nonlinear systems, IEEE Trans. Fuzzy Syst., 29 (2021), 861–873. https://doi.org/10.1109/TFUZZ.2020.2966155 doi: 10.1109/TFUZZ.2020.2966155 |
[27] | D. Franke, 2D-analysis of Hybrid systems, In: P. M. Frank, Advances in control, Springer, 1999, 293–299. |
[28] | Z. Duan, J. Liang, Z. Xiang, $H_\infty$ control for continuous-discrete systems in T-S fuzzy model with finite frequency specifications two-dimensional nonlinear systems, Discrete Contin. Dyn. Syst., 15 (2022), 3155–3172. https://doi.org/10.3934/dcdss.2022064 doi: 10.3934/dcdss.2022064 |