In this article, we study the Pareto optimal $ H_{2} $ /$ H_{\infty} $ filter design problem for a generalization of discrete-time stochastic systems. By constructing the estimation equation of the given systems with the estimated signal, a filter error estimation system is obtained. The aim is to obtain a gain matrix $ K^{\star} $ that optimizes both performance indicators we set. To deal with this problem, two different upper bounds for two performance indicators are given respectively. The optimal problem therefore is transformed into a Pareto optimal problem with linear matrix inequalities ($ LMIs $) which can be addressed through the $ LMI $ toolbox in $ MATLAB $.
Citation: Xiaoyu Ren, Ting Hou. Pareto optimal filter design with hybrid $ H_{2} /H_{\infty} $ optimization[J]. Mathematical Modelling and Control, 2023, 3(2): 80-87. doi: 10.3934/mmc.2023008
In this article, we study the Pareto optimal $ H_{2} $ /$ H_{\infty} $ filter design problem for a generalization of discrete-time stochastic systems. By constructing the estimation equation of the given systems with the estimated signal, a filter error estimation system is obtained. The aim is to obtain a gain matrix $ K^{\star} $ that optimizes both performance indicators we set. To deal with this problem, two different upper bounds for two performance indicators are given respectively. The optimal problem therefore is transformed into a Pareto optimal problem with linear matrix inequalities ($ LMIs $) which can be addressed through the $ LMI $ toolbox in $ MATLAB $.
[1] | G. Minkler, J. Minkler, Theory and Application of Kalman Filtering, Palm Bay, FL: Magellan Book Company, 1993. |
[2] | Z. Feng, A robust $H_{2}$ filtering approach and its application to equalizer design for communication systems, IEEE Trans. Signal Process., 53 (2005), 2735–2747. https://doi.org/10.1109/TSP.2005.850353 doi: 10.1109/TSP.2005.850353 |
[3] | L. Xie, Y. Soh, C. De souza, Robust kalman filtering for uncertain discrete-time systems, IEEE Trans. Autom. Control, 39 (1994), 1310–1314. https://doi.org/10.1109/9.293203 doi: 10.1109/9.293203 |
[4] | H. Liu, F. Sun, K. He, Z. Sun, Design of reduced-order $H_{\infty}$ filter for Markovian jumping systems with time delay, IEEE Trans. Circuits Syst. II, Exp. Briefs, 51 (2004), 607–612. https://doi.org/10.1109/TCSII.2004.836882 doi: 10.1109/TCSII.2004.836882 |
[5] | H. Gao, C. Wang, Robust $L_{2}$-$L_{\infty}$ filtering for uncertain systems with multiple time-varying state delays, IEEE Trans. Circuits Syst. I, -Fundam. Theory Appl., 50 (2003), 594–599. https://doi.org/10.1109/TAC.2003.817012 doi: 10.1109/TAC.2003.817012 |
[6] | A. Gonçalves, A. Fioravanti, J. Geromel, $H_{\infty}$ filtering of discrete-time Markov jump linear systems through linear matrix inequalities, IEEE Trans. Autom. Control, 54 (2009), 1347–1351. https://doi.org/10.1109/TAC.2009.2015553 doi: 10.1109/TAC.2009.2015553 |
[7] | B. Chen, W. Zhang, Stochastic $H_2/H_{\infty}$ control with state-dependent noise, IEEE Trans. Autom. Control, 49 (2004), 45–57. https://doi.org/10.1109/TAC.2003.821400 doi: 10.1109/TAC.2003.821400 |
[8] | H. Gao, J. Lam, L. Xie, C. Wang, New approach to mixed $H_2/H_{\infty}$ filtering for polytopic discrete-time systems, IEEE Trans. Signal Process., 53 (2005), 3183–3192. https://doi.org/10.1109/TSP.2005.851116 doi: 10.1109/TSP.2005.851116 |
[9] | Z. Wang, B. Huang, Robust $H_2/H_{\infty}$ filtering for linear systems with error variance constraints, IEEE Trans. Signal Process., 48 (2000), 2463–2467. https://doi.org/10.1109/78.852028 doi: 10.1109/78.852028 |
[10] | B. Chen, W. Chen, H. Wu, Robust $H_2/H_{\infty}$ global linearization filter design for nonlinear stochastic systems, IEEE Trans. Circuits Syst. I, Regular Papers, 56 (2009), 1441–1454. https://doi.org/1109/TCSI.2008.2007059 |
[11] | C. Huang, Decentralized fuzzy control of nonlinear interconnected dynamic delay systems via mixed $H_2/H_{\infty}$ optimization with Smith predictor, IEEE T. FUZZY SYST., 19 (2011), 276–290. https://doi.org/1109/TFUZZ.2010.2095860 |
[12] | W. Zhang, B. Chen, C. Tseng, Robust $H_{\infty}$ filtering for nonlinear stochastic systems, IEEE Trans. Signal Process., 53 (2005), 589–598. https://doi.org/10.1109/TSP.2004.840724 doi: 10.1109/TSP.2004.840724 |
[13] | J. Engwerda, Necessary and sufficient conditions for Pareto optimal solutions of cooperative differential games, SIAM J. Control Optim., 48 (2010), 3859–3881. https://doi.org/10.1137/080726227 doi: 10.1137/080726227 |
[14] | P. Reddy, J. Engwerda, Pareto optimality in infinite horizon linear quadratic differential games, Automatica, 49 (2015), 1705–1714. https://doi.org/ 10.1016/j.automatica.2013.03.004 doi: 10.1016/j.automatica.2013.03.004 |
[15] | P. Reddy, J. Engwerda, Necessary and sufficient conditions for Pareto optimality in infinite horizon cooperative differential games, IEEE Trans. Autom. Control, 59 (2014), 2536–2542. https://doi.org/10.1109/TAC.2014.2305933 doi: 10.1109/TAC.2014.2305933 |
[16] | J. Engwerda, LQ Dynamic Optimization and Differential Games, London: Macsource press, 2005. |
[17] | P. Reddy, Essays on Dynamic Games, Tilburg: Center for Economic Research, 2011. |
[18] | B. Chen, S. Ho, Multiobjective tracking control design of T-S fuzzy systems: Fuzzy Pareto optimal approach, Fuzzy Sets and Systems, 290 (2016), 39–55. https://doi.org/10.1016/j.fss.2015.06.014 doi: 10.1016/j.fss.2015.06.014 |
[19] | Y. Lin, X. Jiang, W. Zhang, Necessary and sufficient conditions for Pareto optimality of the stochastic systems in finite horizon, Automatica, 194 (2018), 341–348. https://doi.org/10.1016/j.automatica.2018.04.044 doi: 10.1016/j.automatica.2018.04.044 |
[20] | Y. Lin, T. Zhang, W. Zhang, Infinite horizon linear quadratic Pareto game of the stochastic singular systems, J. Franklin Inst., 355 (2018), 4436–4452. https://doi.org/10.1016/j.jfranklin.2018.04.025 doi: 10.1016/j.jfranklin.2018.04.025 |
[21] | R. Andreas, H. Manuel, E. Christian, Pareto optimization of wavelet filter design for partial discharge detection in electrical machines, Measurement, 205 (2022), 112–163. https://doi.org/10.1016/j.measurement.2022.112163 doi: 10.1016/j.measurement.2022.112163 |
[22] | B. Satyajeet, M. Wannes, N. Philippe, H. Ihab, V. Jan, Ellipsoid based Pareto filter for multiobjective optimisation under parametric uncertainty: A beer study, IFAC-PapersOnLine, 55 (2022), 409–414. https://doi.org/10.1016/j.ifacol.2022.09.129 doi: 10.1016/j.ifacol.2022.09.129 |
[23] | T. M. Khaled, H. A. Mahmoud, H. H. Eman, A. A. Atef, Fine tuning of a PID controller with inlet derivative filter using Pareto solution for gantry crane systems, Alexandria Engineering Journal, 61 (2022), 6659–6673. https://doi.org/10.1016/j.aej.2021.12.017 doi: 10.1016/j.aej.2021.12.017 |
[24] | B. Chen, H. Lee, C. Wu, Pareto optimal filter design for nonlinear stochastic fuzzy systems via multiobjective $H_2/H_{\infty}$ optimization, IEEE T. Fuzzy Syst., 23 (2015), 387–399. https://doi.org/10.1109/TFUZZ.2014.2312985. doi: 10.1109/TFUZZ.2014.2312985 |