The objective of this paper is to describe the problem of boundary optimal control of the reaction-advection-diffusion equation for not very regular Dirichlet data and enumerate its qualitative properties. We check that the state equation is well-posed and we introduce the penalization technique to take into account the boundary condition of the Dirichlet type. Then, we consider the corresponding optimal boundary control problem and give the optimality conditions. Finally, we conducted a numerical investigation of the convergence of the solution of the penalized problem to the solution of the non-penalized one when the penalty parameter tends to zero in regular and non-regular domains.
Citation: Bader Saad Alshammari, Daoud Suleiman Mashat, Fouad Othman Mallawi. Numerical investigation for a boundary optimal control of reaction-advection-diffusion equation using penalization technique[J]. Mathematical Modelling and Control, 2024, 4(3): 336-349. doi: 10.3934/mmc.2024027
The objective of this paper is to describe the problem of boundary optimal control of the reaction-advection-diffusion equation for not very regular Dirichlet data and enumerate its qualitative properties. We check that the state equation is well-posed and we introduce the penalization technique to take into account the boundary condition of the Dirichlet type. Then, we consider the corresponding optimal boundary control problem and give the optimality conditions. Finally, we conducted a numerical investigation of the convergence of the solution of the penalized problem to the solution of the non-penalized one when the penalty parameter tends to zero in regular and non-regular domains.
[1] | I. Babu${\breve {\rm{s}}}$ka, The finite element method with penalty, Math. Comput., 27 (1973), 221–228. https://doi.org/10.2307/2005611 doi: 10.2307/2005611 |
[2] | A. Kirsch, The Robin problem for the helmholtz equation as a singular perturbation problem, Numer. Funct. Anal. Optimiz., 8 (1985), 1–20. https://doi.org/10.1080/01630568508816201 doi: 10.1080/01630568508816201 |
[3] | I. Lasiecka, J. Sokolowski, Semidiscrete approximation of hyperbolic boundary value problem with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 20 (1989), 1366–1387. https://doi.org/10.1137/0520090 doi: 10.1137/0520090 |
[4] | F. B. Belgacem, H. E. Fekih, J. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth dirichlet boundary conditions, Asymptotic Anal., 34 (2003), 121–136. |
[5] | M. Costabel, M. Dauge, A singularly perturbed mixed boundary value problem, Commun. PDE, 21 (1996), 1919–1949. |
[6] | E. Casas, M. Mateos, J. P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM Control Optim. Calc. Var., 15 (2009), 782–809. https://doi.org/10.1051/cocv:2008049 doi: 10.1051/cocv:2008049 |
[7] | L. Hou, S. S. Ravindran, A penalized neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations, SIAM J. Control Optim., 36 (1998), 1795–1814. https://doi.org/10.1137/S0363012996304870 doi: 10.1137/S0363012996304870 |
[8] | L. Hou, S. S. Ravindran, Numerical approximation of optimal flow control problems by a penalty method: error estimates and numerical results, SIAM J. Sci. Comput., 20 (1999), 1753–1777. https://doi.org/10.1137/S1064827597325153 doi: 10.1137/S1064827597325153 |
[9] | T. Masrour, Contrôlabilité et observabilité des sytèmes distribués, problèmes et méthodes, Thesis Ecole Nationale Ponts Chaussées, 1995. |
[10] | N. Arada, H. E. Fekih, J. Raymond, Asymptotic analysis of some control problems, Asymptotic Anal., 24 (2000), 343–366. |
[11] | F. B. Belgacem, C. Bernardi, H. E. Fekih, Dirichlet boundary control for a parabolic equation with a final observation Ⅰ: a space-time mixed formulation and penalization, Asymptotic Anal., 71 (2011), 101–121. https://doi.org/10.3233/ASY-2010-1015 doi: 10.3233/ASY-2010-1015 |
[12] | F. B. Belgacem, H. E. Fekih, H. Metoui, Singular perturbation for the Dirichlet boundary control of elliptic problems, Math. Model. Numer. Anal., 37 (2003), 833–850. https://doi.org/10.1051/m2an:2003057 doi: 10.1051/m2an:2003057 |
[13] | M. E. Hajji, F. Jday, Boundary data completion for a diffusion-reaction equation based on the minimization of an energy error functional using conjugate gradient method, Punjab Univ. J. Math., 51 (2019), 25–43. |
[14] | J. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968. |
[15] | A. Nguyen, J. Raymond, Control problems for convection-diffusion equations with control localized on manifolds, ESAIM Control Optim. Calc. Var., 6 (2001), 467–488. |
[16] | R. Glowinski, J. Lions, Exact and approximate controllability for distributed parameter systems, part Ⅰ, Acta Numer., 3 (1994), 269–378. https://doi.org/10.1017/S0962492900002452 doi: 10.1017/S0962492900002452 |
[17] | R. Glowinski, J. Lions, Exact and approximate controllability for distributed parameter systems, part Ⅱ, Acta Numer., 4 (1995), 159–328. https://doi.org/10.1017/S0962492900002543 doi: 10.1017/S0962492900002543 |