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Abstract: The objective of this paper is to describe the problem of boundary optimal control of the reaction-advection-diffusion
equation for not very regular Dirichlet data and enumerate its qualitative properties. We check that the state equation is well-posed
and we introduce the penalization technique to take into account the boundary condition of the Dirichlet type. Then, we consider the
corresponding optimal boundary control problem and give the optimality conditions. Finally, we conducted a numerical investigation of
the convergence of the solution of the penalized problem to the solution of the non-penalized one when the penalty parameter tends to
zero in regular and non-regular domains.

Keywords: reaction-advection-diffusion equation; penalization technique; boundary optimal control; convergence

1. Introduction

In this paper, we aim to study the optimal control
problem for the reaction-advection-diffusion equation with
non-sufficiently smooth Dirichlet condition on the boundary
on a regular bounded domain of R2. We start by proving
the existence and uniqueness of the solution of the state
equation. Since the use of Dirichlet boundary condition
poses practical difficulties, we will apply a penalization
technique that approaches the state equation by another
having a boundary condition of type Robin, which is
more easy to implement. This method was introduced
by Babus̆ka [1] for elliptic equations and considered later
in several works, see for example [2–4] where several
authors obtained the expected convergence rate and in [5]
where an asymptotic expansion of the penalized solution is
studied. For the boundary (Dirichlet) control problems of
partial differential equations, where the control variable is
generated in L2, Robin penalization thus presents a simple

and efficient way to solve such problems (see [6–13]). We
therefore, propose in this paper to apply this approach to
the problem of boundary control of the reaction-advection-
diffusion equation.

2. Reaction-advection-diffusion equation

Let Ω be an open regular bounded domain of R2, with a
Lipschitz-continuous boundary Γ, and we set

Υ = Ω×]0,T [

and

Π = Γ×]0,T [,

where T is a positive constant. The optimal control problem
consists of finding optimal Dirichlet data g ∈ L2(Π) which
minimizes a cost function depending on the solution u of
the state Eq (2.1) given hereafter and on the control g.
Therefore, it is necessary to define a suitable functional
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framework which allows us to obtain results of existence,
uniqueness, and stability.

Our goal in this work is to mathematically analyze the
penalization technique applied on a Dirichlet condition.
More precisely, we will replace the Dirichlet condition u = g

on Π by a Robin-like condition, as follows:

ε
∂uε
∂n
+ uε = g, on Π

where ε is a small enough positive constant tending to
zero. The advantage of this technique is to define the state
variable uε in L2(0,T, L2(Ω)) for all boundary conditions g

in L2(Π). Therefore, we will consider an optimal control
problem defined on L2(Π). Furthermore, numerically, taking
into account the Dirichlet boundary condition is not made
exactly, but it is rather approached by using a penalization
term. Since the state variable is used in the expression of
the cost function for the optimal control, the convergence of
the penalized variable uε towards the state variable u should
be proved. However, due to some difficulties, this task is
in progress and we will give only a numerical investigation
regarding the convergence in this paper.

2.1. Problem position

Let f ∈ L2(Υ), u0 ∈ L2(Ω), and g ∈ L2(Π), and we aim to
find u the solution of

∂u
∂t
− ∇(µ∇u) + v · ∇u + σu = f in Υ,

u = g on Π,

u(0, ·) = u0 in Ω,

(2.1)

where µ is the diffusion coefficient, σ is the reaction
coefficient, and

v = (v1, v2)T

represents a vector field in (L∞(Υ))2 describing the
advection coefficient. The initial condition is given by u0 ∈

L2(Ω). µ and σ are assumed to be positive. Equation (2.1)
is called a reaction-advection-diffusion equation and has
several applications in science and engineering. Transport
of heat, momentum and energy, solid mechanics, CO2

sequestration, computational fluid dynamics, and biophysics
are a few research fields that need to solve (2.1) numerically

as part of the solution strategy. For the sake of simplification,
we suppose that:

div v = 0 in Ω

and
v · n = 0 in Π.

The resolution of this problem relies on the duality
technique; but, to explain it we need to recall the essential
properties of Eq (2.1) with a homogeneous Dirichlet data.
Problem (2.1) admits a weak formulation as follows: Find
u ∈ L2(0,T,H1

0(Ω)) such that, for all v ∈ H1
0(Ω), we have:

(
d
dt

u(t), v)L2(Ω) + a(u(t), v) = l(v),

u(0) = u0,

(2.2)

where

a(u, v) =
∫
Ω

µ∇u∇v dx +
∫
Ω

(v · ∇u)v dx +
∫
Ω

σuv dx,

l(v) =
∫
Ω

f v dx.

Problem (2.2) admits (according to [14]) a unique solution
in L2(0,T,H1

0(Ω)) with

∥u∥L2(0,T,H1
0 (Ω)) ≤ C

(
∥ f ∥L2(Υ) + ∥u0∥L2(Ω)

)
.

To write the weak formulation of system (2.1) with g ∈

L2(Π), we apply the duality technique, which involves
looking for u ∈ L2(Υ) such that, for all functions ϕ in

L2(0,T,H2(Ω) ∩ H1
0(Ω)) ∩ H1(0,T, L2(Ω))

with ϕ(T ) = 0, we have

− (u,
∂ϕ

∂t
)L2(Υ) − (u,∇(µ∇ϕ))L2(Υ)

− (u, v · ∇ϕ)L2(Υ) + (u, σϕ)L2(Υ)

= ( f , ϕ)L2(Υ) − (g,
∂ϕ

∂n
)L2(Π) + (u(0), ϕ(0))L2(Ω).

(2.3)

In order to prove that problem (2.3) is well-posed, we
need to use the Lax-Milgram lemma. It suffices to observe
that (2.3) is equivalent to: finding u ∈ L2(Υ) such that:

(u, ψ)L2(Υ) = ( f , ϕψ)L2(Υ) − (g,
∂ϕψ

∂n
)L2(Π)

+ (u(0), ϕψ(0))L2(Ω), ∀ψ ∈ L2(Υ),
(2.4)
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where

ϕψ ∈ L2(0,T,H2(Ω) ∩ H1
0(Ω)) ∩ H1(0,T, L2(Ω))

is the unique solution of the following problem:

−
∂ϕψ

∂t
− ∇(µ∇ϕψ) − v · ∇ϕψ + σϕψ = ψ, in Υ,

ϕψ(T ) = 0, in Ω,

satisfying

∥ϕψ∥L2(0,T,H1
0 (Ω)) ≤ C∥ψ∥L2(Υ).

Therefore, the operator

ψ 7→ ( f , ϕψ)L2(Υ) − (g,
∂ϕψ

∂n
)L2(Π) + (u(0), ϕψ(0))L2(Ω)

is bounded since

∥
∂ϕψ

∂n
∥L2(Π) ≤ ∥ϕψ∥L2(0,T,H1

0 (Ω)) ≤ C∥ψ∥L2(Υ).

Therefore, the problem (2.4) (and then the problem (2.3))
admits a unique solution u ∈ L2(Υ) with the stability relation

∥u∥L2(Υ) ≤ C
(
∥g∥L2(Π) + ∥ f ∥L2(Υ) + ∥u0∥L2(Ω)

)
.

2.2. Penalization technique

To overcome the difficulties of the numerical
implementation of the Dirichlet condition, we will use
the penalization technique using a small enough parameter
ε by introducing the set of problems

∂uε
∂t
− ∇(µ∇uε) + v · ∇uε + σuε = f in Υ,

ε
∂uε
∂n
+ uε = g on Π,

uε(0, ·) = u0 in Ω

(2.5)

to approximate problem (2.1). The penalization technique
allows us to work in the Sobolev space H1(Ω). The weak
formulation associated with (2.2) consists of finding uε ∈

L2(0,T,H1(Ω)) such that, for all functions v ∈ H1(Ω), we
have

(
d
dt

uε(t), v)L2(Ω) + a(uε(t), v) = l(v),

uε(0) = u0,

(2.6)

with

a(u, v) =
∫
Ω

µ∇u∇vdx +
∫
Ω

(v · ∇u)vdx

+

∫
Ω

σuvdx +
1
ε

∫
Γ

uvdx,

l(v) =
∫
Ω

f vdx +
1
ε

∫
Γ

gvdx.

Problem (2.5) admits a unique solution in L2(0,T,H1(Ω))
and satisfies the following result:

∥uε∥L2(Υ) ≤ C
(
∥ f ∥L2(Υ) + ∥g∥L2(Π) + ∥u0∥L2(Ω)

)
,

where the constant C is independent of ε.
Concerning the convergence of uε to u, some tools

developed in [4] and a fixed point technique used in [15],
could make it possible to establish a rate of convergence
comparable to that demonstrated in the case of the pure
diffusion equation. This conjecture is supported by some
numerical experiments.

3. Boundary optimal control problem

The goal is to examine the problem of optimal boundary
control of the reaction-advection-diffusion equation. This
involves minimizing a functional criterion

J = J(u, g)

which depends on g as well as on u the solution of (2.1). We
show the existence and uniqueness of the control problem,
which leads us allows to write the first-order optimality
conditions. Then, we introduce the sequence of control
problems obtained by penalizing the Dirichlet condition and
we give an existence result of the optimal solution.

3.1. Boundary non-penalized control problem

We consider the functional cost given by

J(u, g) =
1
2

∫
Υ

(u − ud)2dxdt +
β

2

∫
Π

g2 dΠ

where ud ∈ L2(Υ) is the predefined state (desired profile).
The dependent term of g is the marginal cost.

Consider (2.1) where g ∈ L2(Π). The boundary optimal
control problem is thus expressed by

(P) : min
g∈L2(Π)

J(u, g); u ∈ L2(0,T,H1(Ω)) solution of (2.1).

(3.1)
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Let
F(g) = J(u, g).

Then, the function F then verifies the following conditions:

• F is strictly convex;

• F is coercive ( lim
∥g∥L2(Π)→+∞

F(g) = +∞);

• F is continuous, and this follows from the continuous
dependence of u on g.

Thus, the minimization problem (3.1) admits a unique
solution ḡ ∈ L2(Π).

We want to act on a parabolic partial differential equation,
through the boundary condition of the Dirichlet type, so that
the solution is close to a profile fixed beforehand, with the
best quality-price ratio. For our purpose, it is a question
of minimizing a criterion function which depends on the
solution of the problem and on the data at the boundary
which represents the control. The difficulty of analyzing this
problem strongly depends on the space of possible controls.
Indeed, if we consider the space L2(0,T,H

1
2 (Γ)), we can

have a well-posed state equation on L2(0,T,H1(Ω)) that
is easy to deal with, while identifying the solution to the
optimal control problem presents serious difficulties inherent
in the complex form of the norm of L2(0,T,H

1
2 (Γ)). The

alternative that we propose to study therefore amounts to
working in L2(Π).

Looking for the necessary conditions of optimality, the
triple

(ḡ, ū, p̄) ∈ L2(Π) × L2(Υ) × L2(Υ)

formed by the optimal control, optimal state, and associated
conjoint state is then the unique solution of the following
system:

∂ū
∂t
− ∇(µ∇ū) + v · ∇ū + σū = f , in Υ,

ū = ḡ, on Π,
ū(0, .) = u0, in Ω,

−
∂p̄
∂t
− ∇(µ∇ p̄) − v · ∇ p̄ + σ p̄ = ū − ud, in Υ,

p̄ = 0, on Π,
p̄(T, .) = 0, in Ω,

βḡ −
∂p̄
∂n
= 0, on Π.

(3.2)

Conversely, if (ū, p̄) satisfies the previous system, then

(ū,
1
β

∂p̄
∂n

) is the solution of (P).

Remark 3.1. Strictly speaking, the advection term in the

equation of the adjoint state is of the form (div(vp)), but

thanks to the assumptions made on v (namely div v = 0)

in Ω and v · n = 0 on Π, we obtain the form given above.

3.2. Penalized control problem

We are interested in this part in the penalization of the
control problem (P) given by (3.3). The sequence of
penalized control problems, where the Dirichlet condition
is taken into account by the penalization technique, is of the
form

(Pε) : min
g∈L2(Π)

J(uε, g); uε ∈ L2(0,T,H1(Ω)) solution of (2.5)

(3.3)
which represents an approach to problem (P). For the same
conditions verified by the functional J, we show that the
penalized control problem (Pε) has a unique solution

(ūε, ḡε) ∈ L2(0,T,H1(Ω)) × L2(Π).

It will then constitute an approximation of the optimal
solution (ū, ḡ) of (P). The triple (ḡε, ūε, p̄ε) formed by the
optimal control, optimal state, and associated adjoint state
in the space

L2(Π) × L2(0,T,H1(Ω)) × L2(0,T,H1(Ω))

is the unique solution of the system of the following first-
order optimality conditions:

∂ūε
∂t
− ∇(µ∇ūε) + v · ∇ūε + σūε = f , in Υ,

ε
∂ūε
∂n
+ ūε = ḡε on Π,

ūε(0, ·) = u0, in Ω,

−
∂p̄ε
∂t
− ∇(µ∇p̄ε) − v.∇ p̄ε + σp̄ε = ūε − ud, in Υ,

ε
∂p̄ε
∂n
+ p̄ε = 0, on Π,

p̄ε(T, ·) = 0, in Ω,

βḡε +
1
ε

p̄ε = 0, on Π.

(3.4)

Reciprocally, if (ūε, p̄ε) satisfies the previous system, then

(ūε,−
1
β

p̄ε) is the solution of (Pε). The convergence of the

optimal solution (ūε, ḡε) towards the optimal solution of the
Dirichlet problem (ū, ḡ) is in progress. We will present in the
following section some numerical experiments illustrating
the convergence results.
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4. Numerical investigation

In this section, we present the numerical approximation,
using the finite element method, for both direct and optimal
control problems as well as the penalized problems. We
recall that an effective and simple way to deal with
the Dirichlet condition consists of using the penalization
technique presented above. Based on this procedure, the
solution of Eq (2.1) and the associated control problem
are respectively approximated by those of the penalized
Eq (2.5) and of the penalized control problem (3.3). For
the approximation of the state equations, we adopt the
finite element method for the discretization in space and the
implicit Euler scheme for the discretization in time. For
control problems, we use the conjugate gradient method.
Finally, relying on numerical tests, we confirm the desired-
state convergence results.

4.1. State equation discretization

Before numerically solving the penalized control
problem (3.3), we describe in this section the numerical
resolution of the reaction-advection-diffusion Eq (2.1) using
the penalization technique in order to take into account
the Dirichlet condition. For the discretization in space,
we consider for all h > 0 a triangulation τh of Ω. This
triangulation of step h is a partition into a finite number
of triangles κ called elements, such that two neighboring
triangles have in common a vertex or an entire side. The
size hκ of each κ ∈ τh is less than or equal to h (providing
that size is the length of the longest side of κ). The vertices
of the triangle κ are denoted (si)1≤i≤3. The triangulation
τh is assumed to be regular, i.e., there exists a real α > 0
verifying σκ ≥ αhκ, ∀κ ∈ τh, where σκ is the diameter of
the circle inscribed in κ, and hκ is the size of κ. The finite
element discrete space intended to approximate H1(Ω) is
made up of piecewise affine functions:

Vh = {vh ∈ C(Ω̄), vh/κ ∈ P1(κ),∀κ ∈ τh},

where P1 describes the set of polynomial of first degree. We
introduce the space

VΓh =
{
vΓh ∈ C(Γ), vh/S ∈ P1(S ), ∀S ∈ τΓh

}
,

where τh
Γ describes the triangulation of Γ and S is a segment

of Γ. Vh has a finite dimension (= m). It admits a basis
(ϕi)i=1,m. The one commonly used is composed of shape
functions, which are defined as follows:

ϕi(sj) = δi j =

 1, if i = j,
0, else.

The basis of VΓh is formed by the set of functions

(ϕΓi = ϕi/Γ)1≤i≤mΓ (dimVΓh = mΓ),

which represent the image by the operator trace of functions
ϕi (basic functions of Vh).

4.2. Discretization of the reaction-advection-diffusion

equation

By injecting into the variational formulation (2.2) the
decomposition of the solution uε,h in the space Vh, given by:

uε,h(x, t) =
m∑

j=1

u j(t)ϕ j(x)

with
u j(t) = uε,h(s j, t),

and choosing as test functions the functions

vh = ϕi (1 ≤ i ≤ m),

we get the semi-discrete system MU′(t) + AU(t) = MF(t) +
1
ε

MΓG(t) −Gv(t),

U(0) = U0,
(4.1)

with U(t) the unknown vector of components (ui(t))1≤i≤m,
Gv(t) the vector of components

(
∫
Ω

(v(t) · ∇u(t))ϕi dx)1≤i≤m,

G(t) the vector of components

gi(t) = gh(si, t)

if si is a vertex on Γ and gi(t) = 0 else, where gh denotes
the space approximation of g in VΓh , and F(t) the vector of
components

fi(t) = f (si, t), 1 ≤ i ≤ m
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et
U0 = (u0(si))1≤i≤m.

Matrices M, A, and MΓ are defined by:

M = (Mi j)1≤i, j≤m, Mi j = (ϕi, ϕ j)L2(Ω) A = (Ai j)1≤i, j≤m,

Ai j = µ(∇ϕi,∇ϕ j)L2(Ω) + σ(ϕi, ϕ j)L2(Ω) +
1
ε

(ϕΓi , ϕ
Γ
j )L2(Γ),

MΓ = (MΓi j)1≤i, j≤m,

MΓi j = (ϕΓi , ϕ
Γ
j )L2(Γ), if 1 ≤ i, j ≤ mΓ, MΓi j = 0 else.

For the temporal discretization, we consider the subdivision
of the time interval

[0,T ] =
NT−1⋃
n=0

[tn, tn+1], tn = ndt, dt = T/NT ,

and we use the implicit Euler scheme. By denoting
U(n) as an approximation of U(tn), we obtain the total
discrete system associated with the reaction-advection-
diffusion equation:

( M
dt
+ A

)
U(n+1) =

M
dt

U(n) + MF(n+1) +
1
ε

MΓG(n+1) −G(n)
v ,

U0 = U0,

(4.2)

where
F(n) = F(tn)

et
G(n) = G(tn).

The term G(n)
v , coming from the discretization of the

advection term, is the vector of components

(
m∑

j=1

U(n)
j

∫
Ω

(v(n+1) · ∇ϕ j)ϕi dx)1≤i≤m

with
v(n) = (v(n)

1 , v(n)
2 )

and
v(n)

k = (vk(si, tn))1≤i≤m, 1 ≤ k ≤ 2.

Note that, for reasons of computational simplification, the
“advection” term is treated explicitly (see [16, 17]), which
allows us to have a symmetric matrix of the system. One

can choose, in principle, to also discretize the advection term
implicitly, but this will complicate and make more expensive
the resolution of the problem, even if this scheme has better
stability.

Solving the algebraic system (4.2) requires the inversion

of the matrix
( M

dt
+ A

)
which is symmetric definite positive.

Among the different algorithms that can be adopted, we
have chosen the one that uses the Cholesky factorization.
In addition, for the calculation of the integrals appearing in
the expressions of the matrices intervening in (4.2), one uses
the formulas of quadrature. More precisely, the integrals on
the boundary are approximated by Simpson’s formula, and
the surface integrals are calculated either by the degree 1
formula using the vertices of the triangles or by the degree 2
formula using the midpoints of the edges.

4.3. Discretization of the control problem

In this subsection, we study the discretization of the
control problem associated with the reaction-advection-
diffusion equation. The optimal solution (ū, ḡ) of the control
problem (3.1) is approximated by the optimal solution
(ūε, ḡε) of the penalized problem (3.3). Let (ud,h, gd,h) to be
an approximation of the predefined state (desired profile) on
the triangulation τh. The discrete equivalent of the control
problem (3.3) is given by:

min
uh∈VΓh

{
Jh(uε,h, gh), uε,h approximate solution of (4.2)

}
,

where the discrete version Jh(., .) of the objective function
J(., .) is given by:

Jh(uε,h, gh) =
1
2

∫
Q

(uε,h − ud,h)2dxdt +
β

2

∫
Π

(gh − gd,h)2dΠ.

Using the right rectangle method for time integration, the
discrete control problem can be written as:

min
G
{ Jh,dt(U,G), U solution of (4.2)}, (4.3)

where the expression of Jh,dt is given by:

Jh,dt(U,G) =
dt
2

( NT∑
n=1

(M(U(n) − U(n)
d ),U(n) − U(n)

d )

+ β

NT∑
n=1

(MΓ(G(n) −G(n)
d ),G(n) −G(n)

d )
)
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with

U = (U(n))NT
n=1, G = (G(n))NT

n=1, g(n)
d = (gd(si, tn))m

i=1

and
G(n)

d = (gd(si, tn))m
i=1.

The calculation of the optimality conditions associated with
the discrete control problem (4.3) involves the discrete
adjoint state P which leads to a determination of the optimal
discrete control G. The triple (G,U, P) formed by the
discrete optimal control, the discrete optimal state, and the
discrete adjoint state is the unique solution of the system:

( M
dt
+ A

)
P(n−1) =

M
dt

P(n) + M(U(n) − U(n)
d ) − D(n)

V ,

PNT
= 0, n = NT , · · · , 1,( M

dt
+ A

)
U(n+1) =

M
dt

U(n) + MF(n+1) +
1
ε

MΓG(n+1) −G(n)
V ,

U0 = U0, n = 0, · · · ,NT − 1,

G(n) = −
1
εβ

P(n−1) +G(n)
d , n = 1, · · · ,NT ,

where

D(n)
V = (

m∑
j=1

P(n)
j

∫
Ω

(v(n).∇ϕ j)ϕi dx)1≤i≤m.

In order to use the conjugate gradient method for solving
the discrete control problem (4.3), we need to calculate the
gradient of the functional Jh,dt, which is given, thanks to the
adjoint state technique, by:

∇Jh,dt(G,U) =
NT∑
n=1

MΓ(
1
ε

P(n−1) + β(G(n) −G(n)
d )).

4.4. Optimization algorithm

A problem like (4.3) is usually solved by iterative methods
that construct a sequence {ui}

k
i=0 (k ∈ N) to gradually

move towards a better approximation of the “solution”, i.e,
the point satisfying the optimality condition. Now that
we have given a discretization or an approximation of the
cost function and the deputy state, we use to evaluate the
minimum of the problem (4.3) the gradient method which
belongs to a family of iterative methods called the descent
method since the construction of the sequence {ui}

k
i=0 is such

that F(ui+1) < F(ui) ∀i ∈ N, where F denotes the function
to be minimized, which, in our case, is given by Jh,dt. The
following outlines the gradient method:

(1) Available data:

• Initialization u0, a tolerance γ > 0.
• The function F to be minimized.

(2) Construction:

• A sequence (ui)1≤i≤n such that F(ui+1) < F(ui) ∀i.
• If ui satisfies ∥∇F(ui)∥ ≤ γ then ui is an

approximation of the minimum sought.

Algorithm 1. Optimization algorithm.
1: Initialization u0.
2: Solving the state equation corresponding to u0 and

calculation of F.
3: Calculation of the adjoint state and the ∇F.
4: If the stop condition is satisfied, then go to step 9.

Otherwise, continue with the following steps:
5: Calculation of the direction of descent dn .
6: Exact search for the linear step αn (the criterion is

quadratic).
7: Construction of un+1 = un + αndn.
8: Repeat steps 2 and 3 for un+1 then go to step 4.
9: un+1 is an approximation of the desired minimum.

4.5. Exact linear search

The descent step αn plays a very important role in various
optimization methods. The search for this coefficient then
requires the resolution of a one-dimensional minimization
problem. We consider the merit function α 7−→ q(α)
representing F(gn + αdn) which is strictly convex. So, the
optimal step αn is the unique minimum of the merit function
q, it satisfies the following problem:

q′(αn) = (∇F(gn + αndn), dn) = 0. (4.4)

In the case of the criterion functional used in this work, we
show that αn is given by:

αn = −

∫
Υ

(ug − ud) zdn + β

∫
Π

(g − gd)dn∫
Υ

z2
dn
+ β

∫
Π

d2
n

= −
∇F(un) · dn∫
Υ

z2
dn
+ β

∫
Π

d2
n

,
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where zdn is the solution of the following problem:

∂zdn

∂t
− ∆zdn + v · ∇zdn + σzdn = 0 in Υ,

ε
∂zdn

∂n
+ zdn = dn on Π,

zdn (0, ·) = 0 in Ω.

4.6. Results

We present here a series of numerical tests to illustrate the
results of convergence of the penalized solutions (equations
of state and problems of associated control) to solutions of
non-penalized problems when the penalty parameter ε tends
to zero. For this, a computer code has been implemented
which consists, solving the penalized control problem (Pε).
We recall that, for the numerical resolution of the partial
differential equations whose state and the adjoint state are
solutions, the matrix of the system is obtained by the
Cholesky process, and its inversion is calculated by the
descent-ascent method. The boundary condition considered
in the problems treated here represents a penalization of the
Dirichlet condition. Since the functional considered here
is quadratic, the used optimization method is the conjugate
gradient combined with an exact linear search. Let us
recall that for the numerical resolution, the discretization in
space is given by the finite element method (FEM) and the
discretization in time is given by the implicit Euler scheme.
In the following we present some numerical tests illustrating
the convergence of the penalized solution towards the non-
penalized solution when the penalization parameter ε tends
to zero, first for the equation of state and then for the
associated control problem.

4.6.1. State equation

The parameter values are used to illustrate the theoretical
results, but they have no physical significance. The
simulations are done using MATLAB software.

In the first example, we take the domain as the square

Ω = [0, 1]2

(see Figure 1) and consider the function

ϕ(x1, x2, t) = 4πe(x1+x2+2t).

Figure 1. Mesh of a regular domain, Ω.

Let
v = (v1, v2),

where
v1 = −x1(x1 − 1)(2x2 − 1)

and
v2 = x2(x2 − 1)(2x1 − 1))

and v verify the assumptions

div v = 0 in Υ

and
v · n = 0 on Π.

One can easily verify that

u = ϕ = 4πe(x1+x2+2t)

is a solution (Figure 2) of:

∂u
∂t
− ∇(µ∇u) + v · ∇u + σu = f

in Υ, u = ϕ on Π, u(0) = ϕ(0) in Ω, where µ = 1, and

f = (v1 + v2 + σ)ϕ.

The associated penalized problem is given by:

∂uε
∂t
− ∇(µ∇uε) + v · ∇uε + σuε = f in Υ,

ε
∂uε
∂n
+ uε = ϕ on Π,

uε(0) = ϕ(0) in Ω.
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Figure 2. Exact and approximated solution.

In Figure 3, and in order to evaluate the rate of
convergence, we represent the error (uε − u) in norm L2(Υ)
as a function of ε for time steps dt ∈ {0.01, 0.001}. We can
observe that the error converges linearly to zero when the
penalty parameter ε tends to zero. This is confirmed by the
calculation of the slope, in the region far from the plateau
(Figure 4). The slope is worth 0.92 when dt = 0.01 and 0.90
when dt = 0.001. In Figure 3, we display also the curve of
the error (uε − u) in norm L2(0,T,H1(Ω) for the two time
steps dt ∈ {0.01, 0.001}.

Figure 3. The error (uε − u) in norms
L2(0,T, L2(Ω) and L2(0,T,H1(Ω), respectively,
for the two time steps dt ∈ {0.01, 0.001}.

Figure 4. The error (uε−u) in norm L2(0,T, L2(Ω)
and L2(0,T,H1(Ω) for a time step dt = 0.01.
The measured slope for the L2(0,T, L2(Ω)-error
is 0.92, however it is 0.77 for the L2(0,T,H1(Ω)-
error.
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In the second example, we get a non-regular exact
solution by considering the non-convex domain

Ω = [0, 1]2 \ [0,
1
2

]2

as shown in Figure 5. The exact solution given here is

y = ϕ := 4πe(x1+x2+2t) + r2/3sin(
2θ
3

),

where (r, θ) are the polar coordinates of a point M(x1, x2), r

being the distance between M(x1, x2) and O( 1
2 ,

1
2 ), and θ the

angle between (OA) and (OM) where A( 1
2 , 0).

Figure 5. Mesh of an irregular domain, Ω.

We use the same numerical experiments as in Example 1.
In order to better take into account the regularity of the
solution and to obtain a better precision calculation, we
consider here a mesh twice as fine as that used in the
regular case (h = 0.00625). For the temporal discretization,
we choose dt ∈ {0.01, 0.001}. For different values of
ε, we calculated the error (uε − u) in norm L2(Υ) and
L2(0,T,H1(Ω)), where u and uε are the solutions of Eqs (2.1)
and (2.5), respectively (Figure 6).

Figure 6. The error (uε − u) in norms
L2(0,T, L2(Ω) and L2(0,T,H1(Ω), respectively,
for the two time steps dt ∈ {0.01, 0.001} in the
non-regular domain.

Note that the theoretical results given in [4] for a pure
diffusion predict a linear behavior in ε for the norm error
L2(Υ) and an ε

2
3 behavior for the norm error L2(0,T,H1(Ω)).

In Figure 7, and for the same data as above, we represent
the error (uε − u) in norm L2(Υ) and L2(0,T,H1(Ω) as a
function of ε, where this time u and uε are the solutions
of the reaction-advection-diffusion Eqs (2.1) and (2.5),
respectively, where it is necessary to replace the expression
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of f by

f = 4πe(x1+x2+2t)(v1 + v2 + σ)

+
2
3

r−1/3(v1 sin(
2θ
3

) + v2 cos(
2θ
3

)) + σr2/3sin(
2θ
3

).
(4.5)

Figure 7. The error (uε−u) in norm L2(0,T, L2(Ω)
and L2(0,T,H1(Ω) for a time step dt = 0.01 in the
non-regular domain. The measured slope for the
L2(0,T, L2(Ω)-error is 0.92, however, it is 0.77 for
the L2(0,T,H1(Ω)-error.

We observe the same error behavior as in the regular
case, namely a convergence toward zero (Figure 6). We
also observe a saturation of the error from ε = 10−3. The
calculated slopes are given by 0.92 and 0.77 for the norms
L2 and L2(H1), respectively. A more advanced numerical
study using higher-order time schemes (e.g., the Crank-
Nicholson scheme) and quadrature formulas more precise
for the integration of the advection term could give better
precision on the calculation of the slopes.

4.6.2. Control problem

In this subsection, we present some numerical results
on the convergence of the optimal solution of the control
problem associated with the reaction-advection-diffusion
equation. For this, we consider two examples, the first
concerns a very regular exact optimal solution and the

second an exact solution containing a singular part. We then
compare the calculated optimal solution, using the penalty
technique, to the exact solution in order to evaluate the
convergence rates as a function of the penalty parameter ε
intervening in the Robin condition penalizing the Dirichlet
condition.

We start first with the case where the exact optimal
solution to be approximated is given by:

u = 4πe(x1+x2+2t), g = u|Π

on the domain
Ω =]0, 1[2.

Then, let
ud = u and gd = ud |Π

and consider the optimal control problem

min
1
2

∫
Υ

(u − ud)2 dxdt +
1
2

∫
Π

(g − gd)2 dΠ,

where u is the solution of:

∂u
∂t
− ∇(µ∇u) + v · ∇u + σu = f in Υ, u = g on Π (4.6)

with
u(0) = ud(0)

in Ω, µ = 1,
f = (v1 + v2 + σ)ud

and v the function used previously. One can easily verify
that the minimum of J is reached in (ud, gd) and is equal
to zero. The discretization of the control problem is the
one described in Section 4.3 with a mesh step h = 0.0125
and a time step dt = 0.01. The minimum of the cost
function is calculated by the gradient method combined
with a tolerance of 10−5 and an exact linear search. At
each iteration, the discrete algebraic systems associated with
the Robin condition are inverted by the Cholesky method,
knowing that the factorization is performed only once in
pre-processing. For several values of the penalty parameter,
ε, the discrete optimal state udt

ε,h and the discrete optimal
control gdt

ε,h were calculated. In Figure 8, we represent, on
a logarithmic scale, the relative errors:

ε 7→
∥udt

ε,h − u∥

∥u∥
and

∥gdt
ε,h − g∥

∥g∥
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in norms L2(Υ) and L2(0,T,H1(Ω)) for the optimal state and
in L2(Π) norm for the optimal control.

One can observe on Figure 8 a decrease of the
calculated errors towards zero, which confirms the results
of convergences of the optimal penalized solution (Robin)
to the exact optimal solution (Dirichlet) when the penalty
parameter ε tends to zero.

Figure 8. Error on the optimal state in L2(Υ) and
L2(0,T,H1(Ω)) norms and for the error in L2(Π)
norm on the optimal control, respectively, on a
regular domain.

In addition, we calculated the slopes (convergence rate)
corresponding to the different curves, and for values of ε
far from the saturation zone, which, as explained in the
examples preceding numeric concerning the equation of
state, is due to the fact that the error in h and dt outweighs
that coming from the penalty parameter, ε. The calculated
slopes are given by 0.92, 0.73, and 0.94 for the error on the
optimal state in L2(Υ) and L2(0,T,H1(Ω)) norms and for the
error in L2(Π) norm on the optimal control, respectively.

The last example concerns an exact optimal solution
containing a singular part. For this, we take the non-convex
domain

Ω =]0, 1[2\]0, 1/2[2

used below (see Figure 5). We give the functions:

ud = 4πe(x1+x2+2t) + r
2
3 sin

2
3
θ

and

gd = ud |Π.

and the same objective function J(u, g) considered in the
previous example, where u is the solution of (4.6), and the
second member f is given by (4.5). The optimal solution
is given by (u = ud, g = gd). By carrying out the same
numerical experiment as that of the preceding example, we
show the various errors associated with the control of the
reaction-advection-diffusion equation in the Figure 9.

Figure 9. Error on the optimal state in L2(Υ) and
L2(0,T,H1(Ω)) norms and for the error in L2(Π)
norm on the optimal control, respectively, on a
non-regular domain.

The evaluation of the slope for the different errors leads
to the following results: the slopes for the norms L2(L2)
and L2(H1) on the optimal state u and for the norm L2 on
the optimal control g are 0.92, 0.76, and 0.91, respectively.
The results obtained here allow us to conclude that the
penalized optimal solution (Robin) converges to the optimal
solution associated with the Dirichlet condition when the
penalization parameter ε tends to 0.
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5. Conclusions

We discussed the boundary optimal control problem
for the reaction-advection-diffusion equation for not very
regular Dirichlet boundary condition. We checked the well-
posedness of the state equation. Then, we introduced
the penalization technique of the boundary condition
and we considered, then, the corresponding boundary
optimal control problem and gave the optimality conditions.
Finally, we conducted a numerical analysis of a time
scheme/finite element discretization of the penalized control
system. We investigated the convergence by some numerical
experiments. This work should be confirmed by some
theoretical results on the convergence of the optimal
penalized solution towards the optimal solution of the
Dirichlet problem, which is in progress.
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