Research article Special Issues

On the discontinuous dynamics of a class of 2-DOF frictional vibration systems with asymmetric elastic constraints

  • Received: 14 December 2022 Revised: 21 February 2023 Accepted: 03 March 2023 Published: 07 December 2023
  • In this paper, the discontinuous dynamic behavior of a two-degree-of-freedom frictional collision system including intermediate elastic collision and unilateral elastic constraints subjected to periodic excitation is studied by using flow switching theory. In this system, given that the motion of each object might have a velocity that is either greater than or less than zero and each object experiences a periodic excitation force that has negative feedback, because the kinetic and static friction coefficients differ, the flow barrier manifests when the object's speed is zero. Based on the discontinuity or nonsmoothness of the oscillator's motion generated by elastic collision and friction, the motion states of the oscillator in the system are divided into 16 cases and the absolute and relative coordinates are used to define various boundaries and domains in the oscillator motion's phase space. On the basis of this, the G-function and system vector fields are used to propose the oscillator motion's switching rules at the displacement and velocity boundaries. Finally, some dynamic behaviors for the 2-DOF oscillator are demonstrated via numerical simulation of the oscillator's stick, grazing, sliding and periodic motions and the scene of sliding bifurcation. The mechanical system's optimization designs with friction and elastic collision will benefit from this investigation's findings.

    Citation: Wen Zhang, Jinjun Fan, Yuanyuan Peng. On the discontinuous dynamics of a class of 2-DOF frictional vibration systems with asymmetric elastic constraints[J]. Mathematical Modelling and Control, 2023, 3(4): 278-305. doi: 10.3934/mmc.2023024

    Related Papers:

  • In this paper, the discontinuous dynamic behavior of a two-degree-of-freedom frictional collision system including intermediate elastic collision and unilateral elastic constraints subjected to periodic excitation is studied by using flow switching theory. In this system, given that the motion of each object might have a velocity that is either greater than or less than zero and each object experiences a periodic excitation force that has negative feedback, because the kinetic and static friction coefficients differ, the flow barrier manifests when the object's speed is zero. Based on the discontinuity or nonsmoothness of the oscillator's motion generated by elastic collision and friction, the motion states of the oscillator in the system are divided into 16 cases and the absolute and relative coordinates are used to define various boundaries and domains in the oscillator motion's phase space. On the basis of this, the G-function and system vector fields are used to propose the oscillator motion's switching rules at the displacement and velocity boundaries. Finally, some dynamic behaviors for the 2-DOF oscillator are demonstrated via numerical simulation of the oscillator's stick, grazing, sliding and periodic motions and the scene of sliding bifurcation. The mechanical system's optimization designs with friction and elastic collision will benefit from this investigation's findings.



    加载中


    [1] J. Hartog, Forced vibrations with combined viscous and coulomb damping, Phil. Mag., 9 (1930), 801–817.
    [2] B. F. Feeny, F. C. Moon, Bifurcation sequences of a coulomb friction oscillator, Nonlinear Dyn., 4 (1993), 25–37. https://doi.org/10.1007/bf00047119 doi: 10.1007/bf00047119
    [3] K. Popp, N. Hinrichs, M. Oestreich, Dynamical behaviour of a friction oscillator with simultaneous self and external excitation, Sadhana, 20 (1995), 627–654. https://doi.org/10.1007/BF02823210 doi: 10.1007/BF02823210
    [4] U. Galvanetto, Dynamics of a three DOF mechanical system with dry friction, Phys. Lett. A, 248 (1998), 57–66. https://doi.org/10.1016/S0375-9601(98)00644-6 doi: 10.1016/S0375-9601(98)00644-6
    [5] U. Galvanetto, Non-linear dynamics of multiple friction oscillators, Comput. Methods Appl. Mech. Engrg., 178 (1999), 291–306. https://doi.org/10.1016/S0045-7825(99)00021-3 doi: 10.1016/S0045-7825(99)00021-3
    [6] J. Alvarez, I. Orlov, L. Acho, An invariance principle for discontinuous dynamic systems with application to a coulomb friction oscillator, J. Dyn. Sys. Meas. Control, 122 (2000), 317–322. https://doi.org/10.1115/1.1317229 doi: 10.1115/1.1317229
    [7] J. J. Sinou, F. Thouverez, L. Jezequel, O. Dereure, G. B. Mazet, Friction induced vibration for an aircraft brake system-part 2: nonlinear dynamics, Int. J. Mech. Sci., 48 (2006), 555–567.
    [8] R. Martinez, J. Alvarez, A controller for 2-DOF underactuated mechanical systems with discontinuous friction, Nonlinear Dyn., 53 (2007), 191–200. https://doi.org/10.1007/s11071-007-9307-1 doi: 10.1007/s11071-007-9307-1
    [9] X. P. Li, C. S. Liu, J. Huang, B. C. Wen, Theoretical research and experiment of vibration friction on vibratory compaction experiment system, Adv. Mat. Res., 118 (2010), 414–418.
    [10] Q. H. Li, Y. M. Chen, Z.Y. Qin, Existence of stick-slip periodic solutions in a dry friction oscillator, Chin. Phys. Lett., 28 (2011), 030502. https://doi.org/10.1088/0256-307X/28/3/030502 doi: 10.1088/0256-307X/28/3/030502
    [11] H. B. Fang, X. Jian, Dynamics of a three-module vibration-driven system with non-symmetric coulomb's dry friction, Multibody Syst. Dyn., 27 (2012), 455–485. https://doi.org/10.1007/s11044-012-9304-0 doi: 10.1007/s11044-012-9304-0
    [12] Y. Liu, L. H. Wen, Adaptive vibration control for system with friction damping, Adv. Mat. Res., 403 (2012), 138–144.
    [13] N. A. Saadabad, H. Moradi, G. Vossoughi, Dynamic modeling, optimized design, and fabrication of a 2-DOF piezo-actuated stick-slip mobile microrobot, Mech. Mach. Theory, 133 (2019), 514–530. https://doi.org/10.1016/j.mechmachtheory.2018.11.025 doi: 10.1016/j.mechmachtheory.2018.11.025
    [14] B. Balachandran, A. H. Nayfeh, Nonlinear motions of beam-mass structure, Nonlinear Dyn., 1 (1990), 39–61.
    [15] B. Balachandran, M. X. Zhao, Y. Y. Li, Dynamics of elastic structures subjected to impact excitations, In IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, Springer, 1999,263–272.
    [16] B. Balachandran, Dynamics of an elastic structure excited by harmonic and aharmonic impactor motions, J. Vib. Control, 9 (2003), 265–279.
    [17] J. Zhang, L. S. Fan, Z. Chao, R. Pfeffer, D. Qi, Dynamic behavior of collision of elastic spheres in viscous fluids, Powder Technol., 106 (1999), 98–109. https://doi.org/10.1016/S0032-5910(99)00053-4 doi: 10.1016/S0032-5910(99)00053-4
    [18] Z. Liu, Z. Li, B. Cao, Collision detection and response of dynamic cloth simulation in virtual environment, J. Syst. Simul., 19 (2007), 1497–1499. https://doi.org/10.1360/jos182955 doi: 10.1360/jos182955
    [19] Z. H. Tian, L. Zhao, Y. Jia, Research of dynamic collision detection algorithm based on entity behaviors, J. Syst. Simul., 21 (2009), 1380–1383. https://doi.org/10.1360/972009-1549 doi: 10.1360/972009-1549
    [20] Q. W. Ma, L. N. Yun, S. P. Ma, H. T. Wang, Experimental study on dynamic collision characteristics of concrete, Adv. Mat. Res., 150 (2011), 937–940.
    [21] R. R. Aguiar, H. I. Weber, Mathematical modeling and experimental investigation of an embedded vibro-impact system, Nonlinear Dyn., 65 (2011), 317–334. https://doi.org/10.1007/s11071-010-9894-0 doi: 10.1007/s11071-010-9894-0
    [22] A. Bichri, M. Belhaq, J. Perret-Liaudet, Control of vibroimpact dynamics of a single-sided hertzian contact forced oscillator, Nonlinear Dyn., 63 (2011), 51–60. https://doi.org/10.1007/s11071-010-9784-5 doi: 10.1007/s11071-010-9784-5
    [23] A. Afsharfard, Application of nonlinear magnetic vibro-impact vibration suppressor and energy harvester, Mech. Syst. Signal Pr., 98 (2018), 371–381. https://doi.org/10.1016/j.ymssp.2017.05.010 doi: 10.1016/j.ymssp.2017.05.010
    [24] T. Li, C. H. Lamarque, S. Seguy, A. Berlioz, Chaotic characteristic of a linear oscillator coupled with vibro-impact nonlinear energy sink, Nonlinear Dyn., 91 (2018), 2319–2330.
    [25] T. C. Harris, Periodic motions of arbitrarily long periods in non-linear spring-mass systems, Int. J. Nonlinear Mech., 5 (1970), 491–500. https://doi.org/10.1016/0020-7462(70)90010-7 doi: 10.1016/0020-7462(70)90010-7
    [26] D. H. Campen, E. Vorst, J. Spek, A. Kraker, Dynamics of a multi-DOF beam system with discontinuous support, Nonlinear Dyn., 8 (1995), 453–466. https://doi.org/10.1007/BF00045708 doi: 10.1007/BF00045708
    [27] E. Vorst, D. Campen, A. D. Kraker, R. Fey, Periodic solutions of a multi-DOF beam system with impact, J. Sound Vib., 192 (1996), 913–925.
    [28] S. Natsiavas, Stability of piecewise linear oscillators with viscous and dry friction damping, J. Sound Vib., 217 (1998), 507–522. https://doi.org/10.1006/jsvi.1998.1768 doi: 10.1006/jsvi.1998.1768
    [29] S. Natsiavas, G. Verros, Dynamics of oscillators with strongly nonlinear asymmetric damping, Nonlinear Dyn., 20 (1999), 221–246. https://doi.org/10.1023/A:1008398813070 doi: 10.1023/A:1008398813070
    [30] O. Janin, C.H. Lamarque, Stability of singular periodic motions in a vibro-impact oscillator, Nonlinear Dyn., 28 (2002), 231–241.
    [31] M. Arsenault, C.M. Gosselin, Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism, Mech. Mach. Theory, 41 (2006), 1072–1089. https://doi.org/10.1016/j.mechmachtheory.2005.10.014 doi: 10.1016/j.mechmachtheory.2005.10.014
    [32] A. Luo, B.C. Gegg, An analytical prediction of sliding motions along discontinuous boundary in non-smooth dynamical systems, Nonlinear Dyn., 49 (2007), 401–424. https://doi.org/10.1007/s11071-006-9130-0 doi: 10.1007/s11071-006-9130-0
    [33] G. W. Luo, X. H. Lv, X. F. Zhu, Dynamics of vibro-impact mechanical systems with large dissipation, Int. J. Mech. Sci., 50 (2008), 214–232. https://doi.org/10.1016/j.ijmecsci.2007.07.001 doi: 10.1016/j.ijmecsci.2007.07.001
    [34] M. Pascal, Dynamics of coupled oscillators excited by dry friction, J. Comput. Nonlinear Dyn., 3 (2008).
    [35] A. Luo, J. Huang, Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator, Nonlinear Anal., 13 (2012), 241–257. https://doi.org/10.1016/j.nonrwa.2011.07.030 doi: 10.1016/j.nonrwa.2011.07.030
    [36] L. A. Igumnov, V. S. Metrikin, M. V. Zaythev, Dynamics of a frictional system, accounting for hereditary-type friction and the mobility of the vibration limiter, J. Phys., 1141 (2018), 012043. https://doi.org/10.1088/1742-6596/1141/1/012043 doi: 10.1088/1742-6596/1141/1/012043
    [37] S. Xing, A. Luo, On possible infinite bifurcation trees of period-3 motions to chaos in a time-delayed, twin-well duffing oscillator, Int. J. Dyn. Control, 6 (2018), 1429–1464.
    [38] A. Filippov, Differential equations with discontinuous right-hand side, Amer. Math. Soc. Transl., 2 (1964), 199–231.
    [39] A. Filippov, Differential equations with discontinuous righthand sides, Dordrecht: Kluwer Academic Publishers, 1988.
    [40] A. Luo, A theory for non-smooth dynamic systems on the connectable domains, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 1–55. https://doi.org/10.1016/j.cnsns.2004.04.004 doi: 10.1016/j.cnsns.2004.04.004
    [41] A. Luo, B.C. Gegg, Periodic motions in a periodically forced oscillator moving on an oscillating belt with dry friction, J. Comput. Nonlinear Dyn., 1 (2005), 212–220. https://doi.org/10.1115/1.2198874 doi: 10.1115/1.2198874
    [42] A. Luo, Flow switching bifurcations on the separation boundary in discontinuous dynamical systems with flow barriers, Proc. Inst. Mech. Eng, 221 (2007), 475–495. https://doi.org/10.1243/14644193JMBD42 doi: 10.1243/14644193JMBD42
    [43] A. Luo, On flow switching bifurcations in discontinuous dynamical systems, Commun. Nonlinear Sci., 12 (2007), 100–116. https://doi.org/10.1016/j.cnsns.2006.01.010 doi: 10.1016/j.cnsns.2006.01.010
    [44] A. Luo, A theory for flow switchability in discontinuous dynamical systems, Nonlinear Anal., 2 (2008), 1030–1061. https://doi.org/10.1016/j.nahs.2008.07.003 doi: 10.1016/j.nahs.2008.07.003
    [45] A. Luo, Discontinuous dynamical systems on time-varying domains, Beijing: Higher Education Press, 2009.
    [46] A. Luo, T. T. Mao, Analytical conditions for motion switchability in a 2-DOF friction-induced oscillator moving on two constant speed belts, Can. Appl. Math. Q., 127 (2009), 201–242.
    [47] A. Luo, Discontinuous dynamical systems, Beijing: Higher Education Press, 2012.
    [48] A. Luo, Flow barriers and switchability, Discontin. Dyn. Syst., 2012,165–258.
    [49] X. Fu, Y. Zhang, Stick motions and grazing flows in an inclined impact oscillator, Chaos Solitons Fract., 76 (2015), 218–230. https://doi.org/10.1016/j.chaos.2015.04.005 doi: 10.1016/j.chaos.2015.04.005
    [50] J. Huang, A. Luo, Complex dynamics of bouncing motions at boundaries and corners in a discontinuous dynamical system, ASME J. Comput. Nonlinear Dyn., 12 (2017), 61011–61014. https://doi.org/10.1115/1.4036518 doi: 10.1115/1.4036518
    [51] J. Fan, X. Shan, S. Li, Analysis of dynamical behaviors of a friction-induced oscillator with switching control law, Chaos Solitons Fract., 103 (2017), 513–531. https://doi.org/10.1016/j.chaos.2017.07.009 doi: 10.1016/j.chaos.2017.07.009
    [52] S. Chen, J. Fan, T. Liu, On discontinuous dynamics of a 2-DOF friction-influenced oscillator with multiple elastic constraints, Int. J. Nonlinear Mech., 110 (2019), 131–150. https://doi.org/10.1016/j.ijnonlinmec.2018.12.004 doi: 10.1016/j.ijnonlinmec.2018.12.004
    [53] M. Gao, J. Fan, Analysis of dynamical behaviors of a 2-DOF friction oscillator with elastic impacts and negative feedbacks, Nonlinear Dyn., 102 (2020), 1–34. https://doi.org/10.1007/s11071-020-05904-z doi: 10.1007/s11071-020-05904-z
    [54] Y. Peng, J. Fan, M. Gao, J. Li, Discontinuous dynamics of an asymmetric 2-DOF friction oscillator with elastic and rigid impacts, Chaos Solitons Fract., 150 (2021), 111195. https://doi.org/10.1016/j.chaos.2021.111195 doi: 10.1016/j.chaos.2021.111195
    [55] W. Li, L. Huang, J. Wang, Global asymptotical stability and sliding bifurcation analysis of a general Filippov-type predator-prey model with a refuge, Appl. Math. Comput., 405 (2021), 126263. https://doi.org/10.1016/j.amc.2021.126263 doi: 10.1016/j.amc.2021.126263
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(679) PDF downloads(139) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog