Research article

Hidden chaotic mechanisms for a family of chameleon systems

  • Received: 27 May 2023 Revised: 27 August 2023 Accepted: 27 August 2023 Published: 27 December 2023
  • Chameleon chaotic systems are nonlinear dynamical systems whose chaotic attractors can transform between hidden and self-excited types by tuning system parameters to modify equilibrium points. This paper proposes a novel family of chameleon chaotic systems, which can exhibit three types of chaotic attractors: self-excited attractors with a nonhyperbolic equilibrium, hidden attractors with a stable equilibrium, and hidden attractors with no equilibrium points. Bifurcation analysis uncovers the mechanisms by which self-excited and hidden chaotic attractors arise in this family of chameleon systems. It is demonstrated that various forms of chaos emerge through period-doubling routes associated with changes in the coefficient of a linear term. An electronic circuit is designed and simulated in Multisim to realize a hidden chaotic system with no equilibrium points. It is demonstrated that the electronic circuit simulation is consistent with the theoretical model. This research has the potential to enhance our comprehension of chaotic attractors, especially the hidden chaotic attractors.

    Citation: Xue Zhang, Bo Sang, Bingxue Li, Jie Liu, Lihua Fan, Ning Wang. Hidden chaotic mechanisms for a family of chameleon systems[J]. Mathematical Modelling and Control, 2023, 3(4): 400-415. doi: 10.3934/mmc.2023032

    Related Papers:

  • Chameleon chaotic systems are nonlinear dynamical systems whose chaotic attractors can transform between hidden and self-excited types by tuning system parameters to modify equilibrium points. This paper proposes a novel family of chameleon chaotic systems, which can exhibit three types of chaotic attractors: self-excited attractors with a nonhyperbolic equilibrium, hidden attractors with a stable equilibrium, and hidden attractors with no equilibrium points. Bifurcation analysis uncovers the mechanisms by which self-excited and hidden chaotic attractors arise in this family of chameleon systems. It is demonstrated that various forms of chaos emerge through period-doubling routes associated with changes in the coefficient of a linear term. An electronic circuit is designed and simulated in Multisim to realize a hidden chaotic system with no equilibrium points. It is demonstrated that the electronic circuit simulation is consistent with the theoretical model. This research has the potential to enhance our comprehension of chaotic attractors, especially the hidden chaotic attractors.



    加载中


    [1] V. G. Ivancevic, T. T. Ivancevic, Quantum neural computation, New York: Springer, 2010. http://doi.org/10.1007/978-90-481-3350-5
    [2] D. Toker, F. T. Sommer, M. D'Esposito, A simple method for detecting chaos in nature, Commun. Biol., 3 (2020), 11. http://doi.org/10.1038/s42003-019-0715-9 doi: 10.1038/s42003-019-0715-9
    [3] H. W. Lorenz, Nonlinear dynamical economics and chaotic motion, Berlin: Springer, 1993. http://doi.org/10.1007/978-3-642-78324-1
    [4] S. Lundqvist, N. H. March, M. P. Tosi, Order and chaos in nonlinear physical systems, New York: Springer, 1988. http://doi.org/10.1007/978-1-4899-2058-4
    [5] Q. Lai, B. Bao, C. Chen, J. Kengne, A. Akgul, Circuit application of chaotic systems: modeling, dynamical analysis and control, Eur. Phys. J. Spec. Top., 230 (2021), 1691–1694. http://doi.org/10.1140/epjs/s11734-021-00202-0 doi: 10.1140/epjs/s11734-021-00202-0
    [6] N. Wang, D. Xu, N. V. Kuznetsov, H. Bao, M. Chen, Q. Xu, Experimental observation of hidden Chua's attractor, Chaos Solitons Fract., 170 (2023), 113427. http://doi.org/10.1016/j.chaos.2023.113427 doi: 10.1016/j.chaos.2023.113427
    [7] N. V. Kuznetsov, G. A. Leonov, V. I. Vagaitsev, Analytical-numerical method for attractor localization of generalized Chua's system, IFAC Proc. Vol., 43 (2010), 29–33. http://doi.org/10.3182/20100826-3-TR-4016.00009 doi: 10.3182/20100826-3-TR-4016.00009
    [8] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Localization of hidden Chua's attractors, Phys. Lett. A, 375 (2011), 2230–2233. http://doi.org/10.1016/j.physleta.2011.04.037 doi: 10.1016/j.physleta.2011.04.037
    [9] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Hidden attractor in smooth Chua systems, Phys. D, 241 (2012), 1482–1486. http://doi.org/10.1016/j.physd.2012.05.016 doi: 10.1016/j.physd.2012.05.016
    [10] S. Jafari, J. C. Sprott, F. Nazarimehr, Recent new examples of hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1469–1476. http://doi.org/10.1140/epjst/e2015-02472-1 doi: 10.1140/epjst/e2015-02472-1
    [11] Z. Wang, Z. Wei, K. Sun, S. He, H. Wang, Q. Xu, et al., Chaotic flows with special equilibria, Eur. Phys. J. Spec. Top., 229 (2020), 905–919. http://doi.org/10.1140/epjst/e2020-900239-2 doi: 10.1140/epjst/e2020-900239-2
    [12] X. Wang, N. V. Kuznetsov, G. Chen, Chaotic systems with multistability and hidden attractors, Switzerland: Springer, 2021. http://doi.org/10.1007/978-3-030-75821-9
    [13] N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, L. Chua, Hidden attractors in Chua circuit: mathematical theory meets physical experiments, Nonlinear Dyn., 111 (2023), 5859–5887. http://doi.org/10.1007/s11071-022-08078-y doi: 10.1007/s11071-022-08078-y
    [14] Z. Wang, A. Ahmadi, H. Tian, S. Jafari, G. Chen, Lower-dimensional simple chaotic systems with spectacular features, Chaos Solitons Fract., 169 (2023), 113299. http://doi.org/10.1016/j.chaos.2023.113299 doi: 10.1016/j.chaos.2023.113299
    [15] G. A. Leonov, N. V. Kuznetsov, On differences and similarities in the analysis of Lorenz, Chen, and Lu systems, Appl. Math. Comput., 256 (2015), 334–343. http://doi.org/10.1016/j.amc.2014.12.132 doi: 10.1016/j.amc.2014.12.132
    [16] G. A. Leonov, N. V. Kuznetsov, Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors, IFAC Proc. Vol., 47 (2014), 5445–5454. http://doi.org/10.3182/20140824-6-ZA-1003.02501 doi: 10.3182/20140824-6-ZA-1003.02501
    [17] D. Dudkowski, A. Prasad, T. Kapitaniak, Perpetual points: new tool for localization of co-existing attractors in dynamical systems, Int. J. Bifurcat. Chaos, 27 (2017), 1750063. http://doi.org/10.1142/S0218127417500638 doi: 10.1142/S0218127417500638
    [18] D. Dudkowski, A. Prasad, T. Kapitaniak, Perpetual points and hidden attractors in dynamical systems, Phys. Lett. A, 379 (2015), 2591–2596. http://doi.org/10.1016/j.physleta.2015.06.002 doi: 10.1016/j.physleta.2015.06.002
    [19] F. Nazarimehr, B. Saedi, S. Jafari, J. C. Sprott, Are perpetual points sufficient for locating hidden attractors? Int. J. Bifurcat. Chaos, 27 (2017), 1750037. http://doi.org/10.1142/S0218127417500377 doi: 10.1142/S0218127417500377
    [20] X. Wang, Ü. Çavuşoğlu, S. Kacar, A. Akgul, V. T. Pham, S. Jafari, et al., S-box based image encryption application using a chaotic system without equilibrium, Appl. Sci., 9 (2019), 781. http://doi.org/10.3390/app9040781 doi: 10.3390/app9040781
    [21] X. Wang, G. Chen, A chaotic system with only one stable equilibrium, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1264–1272. http://doi.org/10.1016/j.cnsns.2011.07.017 doi: 10.1016/j.cnsns.2011.07.017
    [22] S. Jafari, J. C. Sprott, Simple chaotic flows with a line equilibrium, Chaos Solitons Fract., 57 (2013), 79–84. http://doi.org/10.1016/j.chaos.2013.08.018 doi: 10.1016/j.chaos.2013.08.018
    [23] V. T. Pham, C. Volos, S. Jafari, Z. Wei, X. Wang, Constructing a novel no-equilibrium chaotic system, Int. J. Bifurcat. Chaos, 24 (2014), 1450073. http://doi.org/10.1142/S0218127414500734 doi: 10.1142/S0218127414500734
    [24] V. T. Pham, S. Jafari, T. Kapitaniak, Constructing a chaotic system with an infinite number of equilibrium points, Int. J. Bifurcat. Chaos, 26 (2016), 1650225. http://doi.org/10.1142/S0218127416502254 doi: 10.1142/S0218127416502254
    [25] V. T. Pham, S. Jafari, T. Kapitaniak, C. Volos, S. T. Kingni, Generating a chaotic system with one stable equilibrium, Int. J. Bifurcat. Chaos, 27 (2017), 1750053. http://doi.org/10.1142/S0218127417500535 doi: 10.1142/S0218127417500535
    [26] M. A. Jafari, E. Mliki, A. Akgul, V. T. Pham, S. T. Kingni, X. Wang, et al., Chameleon: the most hidden chaotic flow, Nonlinear Dyn., 88 (2017), 2303–2317. http://doi.org/10.1007/s11071-017-3378-4 doi: 10.1007/s11071-017-3378-4
    [27] F. Wu, T. Hayat, X. An, J. Ma, Can Hamilton energy feedback suppress the chameleon chaotic flow? Nonlinear Dyn., 94 (2018), 669–677. http://doi.org/10.1007/s11071-018-4384-x doi: 10.1007/s11071-018-4384-x
    [28] S. Mobayen, A. Fekih, S. Vaidyanathan, A. Sambas, Chameleon chaotic systems with quadratic nonlinearities: an adaptive finite-time sliding mode control approach and circuit simulation, IEEE Access, 9 (2021), 64558–64573. http://doi.org/10.1109/ACCESS.2021.3074518 doi: 10.1109/ACCESS.2021.3074518
    [29] C. Li, J. C. Sprott, Multistability in a butterfly flow, Int. J. Bifurcat. Chaos, 23 (2013), 1350199. http://doi.org/10.1142/S021812741350199X doi: 10.1142/S021812741350199X
    [30] A. N. Pisarchik, U. Feudel, Control of multistability, Phys. Rep., 540 (2014), 167–218. http://doi.org/10.1016/j.physrep.2014.02.007 doi: 10.1016/j.physrep.2014.02.007
    [31] T. Kapitaniak, G. A. Leonov, Multistability: uncovering hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1405–1408. http://doi.org/10.1140/epjst/e2015-02468-9 doi: 10.1140/epjst/e2015-02468-9
    [32] P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, G. A. Leonov, Control of multistability in hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1485–1491. http://doi.org/10.1140/epjst/e2015-02474-y doi: 10.1140/epjst/e2015-02474-y
    [33] A. Ahmadi, S. Parthasarathy, H. Natiq, S. Jafari, I. Franović, K. Rajagopal, A non-autonomous mega-extreme multistable chaotic system, Chaos Solitons Fract., 174 (2023), 113765. http://doi.org/10.1016/j.chaos.2023.113765 doi: 10.1016/j.chaos.2023.113765
    [34] T. Moalemi, A. Ahmadi, S. Jafari, G. Chen, A novel mega-stable system with attractors in real-life object shapes, Sci. Iran., in press, 2023. http://doi.org/10.24200/SCI.2023.60858.7030
    [35] R. Zhou, Y. Gu, J. Cui, G. Ren, S. Yu, Nonlinear dynamic analysis of supercritical and subcritical Hopf bifurcations in gas foil bearing-rotor systems, Nonlinear Dyn., 103 (2021), 2241–2256. http://doi.org/10.1007/s11071-021-06234-4 doi: 10.1007/s11071-021-06234-4
    [36] N. V. Stankevich, N. V. Kuznetsov, G. A. Leonov, L. O. Chua, Scenario of the birth of hidden attractors in the Chua circuit, Int. J. Bifurcat. Chaos, 27 (2017), 1730038. http://doi.org/10.1142/S0218127417300385 doi: 10.1142/S0218127417300385
    [37] H. Zhao, Y. Lin, Y. Dai, Hopf bifurcation and hidden attractor of a modified Chua's equation, Nonlinear Dyn., 90 (2017), 2013–2021. http://doi.org/10.1007/s11071-017-3777-6 doi: 10.1007/s11071-017-3777-6
    [38] M. Liu, B. Sang, N. Wang, I. Ahmad, Chaotic dynamics by some quadratic jerk systems, Axioms, 10 (2021), 227. http://doi.org/10.3390/axioms10030227 doi: 10.3390/axioms10030227
    [39] B. Li, B. Sang, M. Liu, X. Hu, X. Zhang, N. Wang, Some jerk systems with hidden chaotic dynamics, Int. J. Bifurcat. Chaos, 33 (2023), 2350069. http://doi.org/10.1142/S0218127423500694 doi: 10.1142/S0218127423500694
    [40] S. Kumarasamy, M. Banerjee, V. Varshney, M. D. Shrimali, N. V. Kuznetsov, A. Prasad, Saddle-node bifurcation of periodic orbit route to hidden attractors, Phys. Rev. E, 107 (2023), L052201. http://doi.org/ 10.1103/PhysRevE.107.L052201 doi: 10.1103/PhysRevE.107.L052201
    [41] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D, 16 (1985), 285–317. http://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
    [42] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, H. Mühlig, Handbook of mathematics, Berlin: Springer, 2015. http://doi.org/10.1007/978-3-662-46221-8
    [43] W. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250–256. http://doi.org/10.1006/jmaa.1994.1079 doi: 10.1006/jmaa.1994.1079
    [44] B. Sang, B. Huang, Bautin bifurcations of a financial system, Electron. J. Qual. Theory Differ. Equations, 95 (2017), 1–22. http://doi.org/10.14232/ejqtde.2017.1.95 doi: 10.14232/ejqtde.2017.1.95
    [45] B. Zhang, L. Liu, Chaos-based image encryption: review, application, and challenges, Mathematics, 11 (2023), 2585. http://doi.org/10.3390/math11112585 doi: 10.3390/math11112585
    [46] A. Noor, Z. G. Ç. Taşkıran, Random number generator and secure communication applications based on infinitely many coexisting chaotic attractors, Electrica, 21 (2021), 180–188. http://doi.org/10.5152/electrica.2021.21017 doi: 10.5152/electrica.2021.21017
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1186) PDF downloads(140) Cited by(0)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog