Research article

Hopf algebra of labeled simple graphs arising from super-shuffle product

  • Received: 18 January 2023 Revised: 21 March 2023 Accepted: 08 April 2023 Published: 19 March 2024
  • From the connections between permutations and labeled simple graphs, we generalized the super-shuffle product and the cut-box coproduct on permutations to labeled simple graphs. We then proved that the vector space spanned by labeled simple graphs is a Hopf algebra with these two operations.

    Citation: Jiaming Dong, Huilan Li. Hopf algebra of labeled simple graphs arising from super-shuffle product[J]. Mathematical Modelling and Control, 2024, 4(1): 32-43. doi: 10.3934/mmc.2024004

    Related Papers:

  • From the connections between permutations and labeled simple graphs, we generalized the super-shuffle product and the cut-box coproduct on permutations to labeled simple graphs. We then proved that the vector space spanned by labeled simple graphs is a Hopf algebra with these two operations.



    加载中


    [1] H. Hopf, A Über die topologie der gruppen-mannigfaltigkeiten und ihrer verallgemeinerungen, In: Selecta Heinz Hopf, Springer Science & Business Media, 1964,119–151.
    [2] J. W. Milnor, J. C. Moore, On the structure of Hopf algebras, J. Ann. Math., 81 (1965), 211–264. https://doi.org/10.2307/1970615 doi: 10.2307/1970615
    [3] S. U. Chase, M. E. Sweedler, Hopf Algebras and Galois Theory, 97 (1969), 52–83. https://doi.org/10.1007/BFb0101435
    [4] M. E. Sweedler, Hopf algebras, Springer Science & Business Media, Benjamin: New York, 1969.
    [5] R. Ehrenborg, On posets and Hopf algebras, Adv. Math., 119 (1996), 1–25. https://doi.org/10.1006/aima.1996.0026 doi: 10.1006/aima.1996.0026
    [6] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J. Y. Thibon, Noncommutative symmetric functions, Adv. Math., 112 (1995), 218–348. https://doi.org/10.1006/aima.1995.1032 doi: 10.1006/aima.1995.1032
    [7] H. Li, J. Morse, P. Shields, Structure constants for $K$-theory of Grassmannians, J. Comb. Theory Ser. A, 144 (2016), 306–325. https://doi.org/10.1016/j.jcta.2016.06.016 doi: 10.1016/j.jcta.2016.06.016
    [8] Christian Kassel, Quantum groups, Springer Science & Business Media, 1995. https://doi.org/10.1007/978-1-4612-0783-2
    [9] T. Cheng, H. Huang, Y. Yang, Generalized Clifford algebras as algebras in suitable symmetric linear Gr-categories, Symmetry Integr. Geom. Methods Appl., 12 (2015), 004. https://doi.org/10.3842/SIGMA.2016.004 doi: 10.3842/SIGMA.2016.004
    [10] S. A. Joni, G. C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61 (1979), 93–139. https://doi.org/10.1002/sapm197961293 doi: 10.1002/sapm197961293
    [11] W. R. Schmitt, Incidence Hopf algebras, J. Pure Appl. Algebra, 96 (1994), 299–330. https://doi.org/10.1016/0022-4049(94)90105-8 doi: 10.1016/0022-4049(94)90105-8
    [12] W. R. Schmitt, Hopf algebra methods in graph theory, J. Pure Appl. Algebra, 101 (1995), 77–90. https://doi.org/10.1016/0022-4049(95)90925-B doi: 10.1016/0022-4049(95)90925-B
    [13] A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, In: Quantum field theory: perspective and prospective, Springer Science & Business Media, 530 (1999), 59–109. https://doi.org/10.1007/978-94-011-4542-8_4
    [14] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys., 2 (1998), 303–334. https://doi.org/10.4310/ATMP.1998.V2.N2.A4 doi: 10.4310/ATMP.1998.V2.N2.A4
    [15] J. C. Aval, N. Bergeron, J. Machacek, New invariants for permutations, orders and graphs, J. Amer. Math. Soci., 10 (2020), 102080. https://doi.org/10.1016/j.aam.2020.102080 doi: 10.1016/j.aam.2020.102080
    [16] S. K. Lando, On a Hopf algebra in graph theory, J. Comb. Theory Ser. B, 80 (2000), 104–121. https://doi.org/10.1006/jctb.2000.1973 doi: 10.1006/jctb.2000.1973
    [17] N. Jean-Christophe, T. Jean-Yves, T. M. Nicolas Algèbres de Hopf de graphes, Comptes Rendus Math., 333 (2004), 607–610. https://doi.org/10.1016/j.crma.2004.09.012 doi: 10.1016/j.crma.2004.09.012
    [18] A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem Ⅱ: the $\beta$-function, diffeomorphisms and the renormalization group, Commun. Math. Phys., 216 (2001), 215–241. https://doi.org/10.1007/PL00005547 doi: 10.1007/PL00005547
    [19] L. Foissy, Finite dimensional comodules over the Hopf algebra of rooted trees, J. Algebra, 255 (2002), 89–120. https://doi.org/10.1016/S0021-8693(02)00110-2 doi: 10.1016/S0021-8693(02)00110-2
    [20] X. Wang, S. Xu, X. Gao, A Hopf algebra on subgraphs of a graph, J. Algebra Appl., 19 (2020), 2050164. https://doi.org/10.1142/S0219498820501649 doi: 10.1142/S0219498820501649
    [21] C. Malvenuto, C. Reutenauer, Duality between quasi-symmetrical functions and the Solomon descent algebra, J. Algebra, 177 (1995), 967–982. https://doi.org/10.1006/jabr.1995.1336 doi: 10.1006/jabr.1995.1336
    [22] Y. Vargas, Hopf algebra of permutation pattern functions, Discrete Math. Theor. Comput. Sci., AT (2014), 839–850. https://doi.org/10.46298/dmtcs.2446 doi: 10.46298/dmtcs.2446
    [23] M. Liu, H. Li, A Hopf algebra on permutations arising from super-shuffle product, Symmetry, 13 (2021), 1010. https://doi.org/10.3390/sym13061010 doi: 10.3390/sym13061010
    [24] M. Zhao, H. Li, A pair of dual Hopf algebras on permutations, AIMS Math., 6 (2021), 5106–5123. https://doi.org/10.3934/math.2021302 doi: 10.3934/math.2021302
    [25] H. Li, T. MacHenry, A. Conci, Rational convolution roots of isobaric polynomials, Rocky Mountain J. Math., 47 (2017), 1259–1275. https://doi.org/10.1216/RMJ-2017-47-4-1259 doi: 10.1216/RMJ-2017-47-4-1259
    [26] D. Grinberg, V. Reiner, Hopf algebras in combinatorics, arXiv, 2020. https://doi.org/10.48550/arXiv.1409.8356
    [27] D. B. West, Introduction to graph theory, Upper Saddle River: Prentice Hall, 2001.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(607) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog