Recent studies have shown that, in addition to direct predation, fear of predators alters the physiological behavior of prey. Based on this fact, this paper investigates a three-species food chain based on ratio-dependent and Beddington-DeAngelis type functional responses, which incorporates fear effects and two gestation delays. The positivity, boundedness and existence of equilibrium points of the system are investigated, and the local stability behavior of the equilibrium points and the occurrence of Hopf-bifurcation when the time lag parameters exceed the critical values are studied by analyzing the corresponding characteristic equations. The main results show that Hopf-bifurcation occurs when the time delay parameters attain the thresholds. Finally, numerical simulations are performed to verify our main results.
Citation: Yaping Wang, Yuanfu Shao, Chuanfu Chai. Dynamics of a predator-prey model with fear effects and gestation delays[J]. AIMS Mathematics, 2023, 8(3): 7535-7559. doi: 10.3934/math.2023378
Recent studies have shown that, in addition to direct predation, fear of predators alters the physiological behavior of prey. Based on this fact, this paper investigates a three-species food chain based on ratio-dependent and Beddington-DeAngelis type functional responses, which incorporates fear effects and two gestation delays. The positivity, boundedness and existence of equilibrium points of the system are investigated, and the local stability behavior of the equilibrium points and the occurrence of Hopf-bifurcation when the time lag parameters exceed the critical values are studied by analyzing the corresponding characteristic equations. The main results show that Hopf-bifurcation occurs when the time delay parameters attain the thresholds. Finally, numerical simulations are performed to verify our main results.
[1] | A. Das, G. P. Samanta, A prey-predator model with refuge for prey and additional food for predator in a fluctuating environment, Physica A, 538 (2019), 427–450. https://doi.org/10.1016/j.physa.2019.122844 doi: 10.1016/j.physa.2019.122844 |
[2] | D. Pal, G. S. Mahaptra, G. P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model, Math. Biosci., 241 (2013), 181–187. https://doi.org/10.1016/j.mbs.2012.11.007 doi: 10.1016/j.mbs.2012.11.007 |
[3] | S. Sharma, G. P. Samanta, A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge, Chaos Soliton. Fract., 70 (2015), 69–84. https://doi.org/10.1016/j.chaos.2014.11.010 doi: 10.1016/j.chaos.2014.11.010 |
[4] | G. Tang, S. Tang, R. A. Cheke, Global analysis of a holling type Ⅱ predator-prey model with a constant prey refuge, Nonlinear Dynam., 76 (2014), 635–647. https://doi.org/10.1007/s11071-013-1157-4 doi: 10.1007/s11071-013-1157-4 |
[5] | J. P. Tripathi, S. Abbas, M. Thakur, A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 427–450. https://doi.org/10.1016/j.cnsns.2014.08.018 doi: 10.1016/j.cnsns.2014.08.018 |
[6] | A. Q. Khan, S. A. H. Bukhari, M. B. Almatrafi, Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie's prey-predator model, Alex. Eng. J., 61 (2022), 11391–11404. https://doi.org/10.1016/j.aej.2022.04.042 doi: 10.1016/j.aej.2022.04.042 |
[7] | A. Q. Khan, F. Nazir, M. B. Almatrafi, Bifurcation analysis of a discrete Phytoplankton–Zooplankton model with linear predational response function and toxic substance distribution, Int. J. Biomath., 16 (2022). https://doi.org/10.1142/S1793524522500954 doi: 10.1142/S1793524522500954 |
[8] | A. Q. Khan, M. Tasneem, M. B. Almatrafi, Discrete-time COVID-19 epidemic model with bifurcation and control, Alex. Eng. J., 19 (2022), 1944–1969. https://doi.org/10.3934/mbe.2022092 doi: 10.3934/mbe.2022092 |
[9] | N. Mondal, H. Alrabaiah, D. Barman, J. Roy, S. Alam, Influence of predator incited fear and interference competition in the dynamics of prey-predator system where the prey species are protected in a reserved area, Ecol. Environ. Conserv., 28 (2022), 831–852. http://doi.org/10.53550/EEC.2022.v28i02.040 doi: 10.53550/EEC.2022.v28i02.040 |
[10] | D. Mukherjee, Role of fear in predator-prey system with intraspecific competition, Math. Comput. Simul., 177 (2020), 263–275. https://doi.org/10.1016/j.matcom.2020.04.025 doi: 10.1016/j.matcom.2020.04.025 |
[11] | Y. Shao, Global stability of a delayed predator-prey system with fear and Holling-type Ⅱ functional response in deterministic and stochastic environments, Math. Comput. Simul., 200 (2022), 65–77. https://doi.org/10.1016/j.matcom.2022.04.013 doi: 10.1016/j.matcom.2022.04.013 |
[12] | L. Y. Zanette1, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908 |
[13] | S. Creel, D. Christianson, S. Liley, J. A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 315 (2007), 960. https://doi.org/10.1126/science.1135918 doi: 10.1126/science.1135918 |
[14] | J. P. Suraci, M. Clinchy, L. M. Dill, D. Roberts, L. Y. Zanette, Fear of large carnivores causes a trophic 585 cascade, Nat. Commun., 7 (2016), 10698. https://doi.org/10.1038/ncomms10698 doi: 10.1038/ncomms10698 |
[15] | X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1 |
[16] | C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Canadian Entomol., 9 (1959), 293–320. https://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5 |
[17] | C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv |
[18] | C. S. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomol., 91 (1959), 385. https://doi.org/10.4039/Ent91385-7 doi: 10.4039/Ent91385-7 |
[19] | Z. Liu, R. Yuan, Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 296 (2004), 521–537. https://doi.org/10.1016/j.jmaa.2004.04.051 doi: 10.1016/j.jmaa.2004.04.051 |
[20] | X. Shi, X. Zhou, X. Song, Analysis of a stage-structured predator-prey model with Crowley-Martin function, J. Appl. Math. Comput., 36 (2011), 459–472. https://doi.org/10.1007/s12190-010-0413-8 doi: 10.1007/s12190-010-0413-8 |
[21] | J. P. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 45–69. https://doi.org/10.1016/j.cnsns.2015.06.008 doi: 10.1016/j.cnsns.2015.06.008 |
[22] | R. Chinnathambi, F. A. Rihan, Stability of fractional-order prey-predator system with time-delay and monod-haldane functional response, Nonlinear Dynam., 92 (2018), 1637–1648. https://doi.org/10.1007/s11071-018-4151-z doi: 10.1007/s11071-018-4151-z |
[23] | J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 197 (2020), 104176. https://doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176 |
[24] | M. Banerjee, Y. Takeuchi, Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models, J. Theor. Biol., 412 (2017), 154–171. https://doi.org/10.1016/j.jtbl.2016.10.016 doi: 10.1016/j.jtbl.2016.10.016 |
[25] | B. Dubey, A. Kumar, A. P. Maiti, Global stability and Hopf-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 528–554. https://doi.org/10.1016/j.cnsns.2018.07.019 doi: 10.1016/j.cnsns.2018.07.019 |
[26] | J. Zhang, Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay, Appl. Math. Model., 36 (2012), 1219–1231. https://doi.org/10.1016/j.apm.2011.07.071 doi: 10.1016/j.apm.2011.07.071 |
[27] | D. Hu, Y. Li, M. Liu, Y. Bai, Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and ivlev-type functional response, Nonlinear Dynam., 99 (2020), 3323–3350. https://doi.org/10.1007/s11071-020-05467-z doi: 10.1007/s11071-020-05467-z |
[28] | Y. Bai, Y. Li, Stability and Hopf bifurcation for a stage-structured predator-prey model incorporating refuge for prey and additional food for predator, Adv. Differ. Equ., 1 (2019), 1–20. https://doi.org/10.1186/s13662-019-1979-6 doi: 10.1186/s13662-019-1979-6 |
[29] | F. Chen, M. You, Permanence for an integrodifferential model of mutualism, Appl. Math. Comput., 186 (2007), 30–34. https://doi.org/10.1016/j.amc.2006.07.085 doi: 10.1016/j.amc.2006.07.085 |
[30] | E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay-dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086 |
[31] | L. Deng, X. Wang, M. Peng, Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator, Appl. Math. Comput., 231 (2014), 214–230. https://doi.org/10.1016/j.amc.2014.01.025 doi: 10.1016/j.amc.2014.01.025 |
[32] | X. Yang, L. Chen, J. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109–116. https://doi.org/10.1016/0898-1221(96)00129-0 doi: 10.1016/0898-1221(96)00129-0 |
[33] | S. L. Ross, Differential equations, New York: John Wiley and Sons, 1984. |