Research article

Stability and bifurcation in a predator-prey system with effect of fear and additional food

  • Received: 20 October 2023 Revised: 01 December 2023 Accepted: 10 December 2023 Published: 15 January 2024
  • MSC : 34D20, 34D23, 37N25, 92B05

  • In the present study, we propose and analyze a three-dimensional prey-predator model. The prey grows logistically in the absence of the predator and their relationship follows the Crowley-Martin type functional response. In this paper, we examine the impact of supply of the additional food to the predators and the influence of fear in the prey population. Since the predator depends partially on the provided other resources, we incorporate a novel parameter, the degree of dependence, which basically demonstrates how dependent the predator is on the prey population. We investigate the steady-state solutions, and their local and global behavior, which contributes to understanding the long-term dynamics of the interaction. We have shown that the degree of dependence and the cost of fear both can cause periodic orbits to appear in the system via a Hopf-bifurcation. Our findings show that with the newly introduced parameter, we can control the oscillations from the system, which helps to balance the ecosystem. The direction and stability have also been investigated using the center manifold theorem and normal form theory. Last, we perform an extensive numerical simulation to validate our theoretical findings. Our main goal of this work is to maintain the ecological balance in the presence of fear effect and additional food for predators.

    Citation: Reshma K P, Ankit Kumar. Stability and bifurcation in a predator-prey system with effect of fear and additional food[J]. AIMS Mathematics, 2024, 9(2): 4211-4240. doi: 10.3934/math.2024208

    Related Papers:

  • In the present study, we propose and analyze a three-dimensional prey-predator model. The prey grows logistically in the absence of the predator and their relationship follows the Crowley-Martin type functional response. In this paper, we examine the impact of supply of the additional food to the predators and the influence of fear in the prey population. Since the predator depends partially on the provided other resources, we incorporate a novel parameter, the degree of dependence, which basically demonstrates how dependent the predator is on the prey population. We investigate the steady-state solutions, and their local and global behavior, which contributes to understanding the long-term dynamics of the interaction. We have shown that the degree of dependence and the cost of fear both can cause periodic orbits to appear in the system via a Hopf-bifurcation. Our findings show that with the newly introduced parameter, we can control the oscillations from the system, which helps to balance the ecosystem. The direction and stability have also been investigated using the center manifold theorem and normal form theory. Last, we perform an extensive numerical simulation to validate our theoretical findings. Our main goal of this work is to maintain the ecological balance in the presence of fear effect and additional food for predators.



    加载中


    [1] A. J. Lotka, Elements of physical biology, 1925, New York: Williams & Wilkins.
    [2] V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Societá anonima tipografica "Leonardo da Vinci", 1927.
    [3] Z. H. Ma, S. F. Wang, A delay-induced predator-prey model with Holling type functional response and habitat complexity, Nonlinear Dynam., 93 (2018), 1519–1544. https://doi.org/10.1007/s11071-018-4274-2 doi: 10.1007/s11071-018-4274-2
    [4] C. S. Holling, The components of predation as revealed by a study of small mammal predation of the {E}uropean pine sawfly, Can. Entomol., 91 (1959), 293–320.
    [5] R. Xu, M. A. J. Chaplain, F. A. Davidson, Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay, Appl. Math. Comput., 159 (2004), 863–880. https://doi.org/10.1016/j.amc.2003.11.008 doi: 10.1016/j.amc.2003.11.008
    [6] S. K. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl., 481 (2020), 123471. https://doi.org/10.1016/j.jmaa.2019.123471 doi: 10.1016/j.jmaa.2019.123471
    [7] G. R. Jiang, Q. S. Lu, L. N. Qian, Complex dynamics of a Holling type II prey-predator system with state feedback control, Chaos Soliton. Fract., 31 (2007), 448–461. https://doi.org/10.1016/j.chaos.2005.09.077 doi: 10.1016/j.chaos.2005.09.077
    [8] Y. J. Huang, F. D. Chen, L. Zhong, Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672–683. https://doi.org/10.1016/j.amc.2006.04.030 doi: 10.1016/j.amc.2006.04.030
    [9] Z. H. Liu, R. Yuan, Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 296 (2004), 521–537. https://doi.org/10.1016/j.jmaa.2004.04.051 doi: 10.1016/j.jmaa.2004.04.051
    [10] R. K. Upadhyay, R. K. Naji, Dynamics of a three species food chain model with Crowley-Martin type functional response, Chaos Soliton, Fract., 42 (2009), 1337–1346. https://doi.org/10.1016/j.chaos.2009.03.020 doi: 10.1016/j.chaos.2009.03.020
    [11] W. j. Lu, Y. H. Xia, Periodic solution of a stage-structured predator-prey model with Crowley-Martin type functional response, AIMS Math., 7 (2022), 8162–8175. https://www.aimspress.com/article/doi/10.3934/math.2022454 doi: 10.3934/math.2022454
    [12] M. Falconi, M. Huenchucona, C. Vidal, Stability and global dynamic of a stage-structured predator-prey model with group defense mechanism of the prey, Appl. Math. Comput., 270 (2015), 47–61. https://doi.org/10.1016/j.amc.2015.07.109 doi: 10.1016/j.amc.2015.07.109
    [13] X. Y. Meng, H. F. Huo, H. Xiang, Q. Y. Yin, Stability in a predator-prey model with Crowley-Martin function and stage structure for prey, Appl. Math. Comput., 232 (2014), 810–819. https://doi.org/10.1016/j.amc.2014.01.139 doi: 10.1016/j.amc.2014.01.139
    [14] X. Y. Wang, L. Zanette, X. F. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [15] B. F. Xie, N. Zhang, Influence of fear effect on a Holling type III prey-predator system with the prey refuge, AIMS Math., 7 (2022), 1811–1830. https://doi.org/10.3934/math.2022104 doi: 10.3934/math.2022104
    [16] Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic predator-prey model with stage structure for predator and Holling type II functional response, J. Nonlinear Sci., 28 (2018), 1151–1187. https://doi.org/10.1007/s00332-018-9444-3 doi: 10.1007/s00332-018-9444-3
    [17] A. Kumar, B. Dubey, Stability and bifurcation of a prey-predator system with additional food and two discrete delays, CMES-Comp. Model. Eng., 126 (2021), 505–547. https://doi.org/10.32604/cmes.2021.013206 doi: 10.32604/cmes.2021.013206
    [18] J. C. Huang, S. G. Ruan, J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differ. Equations, 257 (2014), 1721–1752. https://doi.org/10.1016/j.jde.2014.04.024 doi: 10.1016/j.jde.2014.04.024
    [19] S. Belvisi, E. Venturino, An ecoepidemic model with diseased predators and prey group defense, Simul. Model. Pract. Th., 34 (2013), 144–155. https://doi.org/10.1016/j.simpat.2013.02.004 doi: 10.1016/j.simpat.2013.02.004
    [20] A. A. Thirthar, S. J. Majeed, M. A. Alqudah, P. Panja, T. Abdeljawad, Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator, Chaos Soliton. Fract., 159 (2022), 112091. https://doi.org/10.1016/j.chaos.2022.112091 doi: 10.1016/j.chaos.2022.112091
    [21] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866
    [22] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [23] A. P. Maiti, B. Dubey, J. Tushar, A delayed prey-predator model with Crowley-Martin-type functional response including prey refuge, Math. Method. Appl. Sci., 40 (2017), 5792–5809. https://doi.org/10.1002/mma.4429 doi: 10.1002/mma.4429
    [24] P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 8 (1989), 211–221. https://doi.org/10.2307/1467324 doi: 10.2307/1467324
    [25] X Y. Zhou, J. G. Cui, Global stability of the viral dynamics with Crowley-Martin functional response, Bull. Korean Math. Soc., 48 (2011), 555–574. https://doi.org/10.4134/BKMS.2011.48.3.555 doi: 10.4134/BKMS.2011.48.3.555
    [26] J. P. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 45–69. https://doi.org/10.1016/j.cnsns.2015.06.008 doi: 10.1016/j.cnsns.2015.06.008
    [27] N. E. Papanikolaou, N. Demiris, P. G. Milonas, S. Preston, T. Kypraios, Does mutual interference affect the feeding rate of aphidophagous coccinellids? A modeling perspective, Plos One, 11 (2016), e0146168. https://doi.org/10.1371/journal.pone.0146168 doi: 10.1371/journal.pone.0146168
    [28] B. S. R. V. Prasad, M. Banerjee, P. D. N. Srinivasu, Dynamics of additional food provided predator-prey system with mutually interfering predators, Math. Biosci., 246 (2013), 176–190. https://doi.org/10.1016/j.mbs.2013.08.013 doi: 10.1016/j.mbs.2013.08.013
    [29] B. Sahoo, S. Poria, The chaos and control of a food chain model supplying additional food to top-predator, Chaos Soliton. Fract., 58 (2014), 52–64. https://doi.org/10.1016/j.chaos.2013.11.008 doi: 10.1016/j.chaos.2013.11.008
    [30] P. D. N. Srinivasu, B. S. R. V. Prasad, M. Venkatesulu, Biological control through provision of additional food to predators: A theoretical study, Theor. Popul. Biol., 72 (2007), 111–120. https://doi.org/10.1016/j.tpb.2007.03.011 doi: 10.1016/j.tpb.2007.03.011
    [31] J. Ghosh, B. Sahoo, S. Poria, Prey-predator dynamics with prey refuge providing additional food to predator, Chaos Soliton. Fract., 96 (2017), 110–119. https://doi.org/10.1016/j.chaos.2017.01.010 doi: 10.1016/j.chaos.2017.01.010
    [32] B. Sahoo, Role of additional food in eco-epidemiological system with disease in the prey, Appl. Math. Comput., 259 (2015), 61–79. https://doi.org/10.1016/j.amc.2015.02.038 doi: 10.1016/j.amc.2015.02.038
    [33] L. Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
    [34] W. Cresswell, Predation in bird populations, J. Ornithol., 152 (2011), 251–263. https://doi.org/10.1007/s10336-010-0638-1 doi: 10.1007/s10336-010-0638-1
    [35] B. Dubey, N, Sajan, A. Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavior, Math. Comput. Simulat., 188 (2021), 164–192. https://doi.org/10.1016/j.matcom.2021.03.037 doi: 10.1016/j.matcom.2021.03.037
    [36] M. M. Chen, Y. Takeuchi, J. F. Zhang, Dynamic complexity of a modified Leslie-Gower predator-prey system with fear effect, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 107109. https://doi.org/10.1016/j.cnsns.2023.107109 doi: 10.1016/j.cnsns.2023.107109
    [37] K. Sarkar, S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Complex., 42 (2020), 100826. https://doi.org/10.1016/j.ecocom.2020.100826 doi: 10.1016/j.ecocom.2020.100826
    [38] H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
    [39] M. Clinchy, M. J. Sheriff, L. Y. Zanette, Predator-induced stress and the ecology of fear, Funct. Ecol., 27 (2013), 56–65. https://doi.org/10.1111/1365-2435.12007 doi: 10.1111/1365-2435.12007
    [40] M. P. Hassell, Mutual interference between searching insect parasites, J. Anim. Ecol., 40 (1971), 473–486. https://doi.org/10.2307/3256 doi: 10.2307/3256
    [41] J. P. Tripathi, S. Abbas, M. Thakur, A density dependent delayed predator-prey model with Beddington-Deangelis type function response incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 427–450. https://doi.org/10.1016/j.cnsns.2014.08.018 doi: 10.1016/j.cnsns.2014.08.018
    [42] R. Bellman, Introduction to matrix analysis, SIAM, New York, 1997.
    [43] S. Ahmad, M. R. M. Rao, Theory of ordinary differential equations: With applications of biology and engineering, Affiliated East-West Private Limited, New Delhi, 1999.
    [44] L. Perko, Differential equations and dynamical systems, Springer Science & Business Media, 2013.
    [45] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, CUP Archive, London, UK, 1981.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1490) PDF downloads(117) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog