The algebraic structure of skew cyclic codes over $ M_{2} $($ \mathbb{F}_2 $), using the $ \mathbb{F}_4 $-cyclic algebra, is studied in this work. We determine that a skew cyclic code with a polynomial of minimum degree $ d(x) $ is a free code generated by $ d(x) $. According to our findings, skew cyclic codes of odd and even lengths are cyclic and $ 2 $-quasi-cyclic over $ M_{2}(\mathbb{F}_{2}) $, respectively. We provide the self-dual skew condition of Hermitian dual codes of skew cyclic codes. The generator polynomials of Euclidean dual codes are obtained. Furthermore, a spanning set of a double skew cyclic code over $ M_{2}(\mathbb{F}_{2}) $ is considered in this paper.
Citation: Xuesong Si, Chuanze Niu. On skew cyclic codes over $ M_{2}(\mathbb{F}_{2}) $[J]. AIMS Mathematics, 2023, 8(10): 24434-24445. doi: 10.3934/math.20231246
The algebraic structure of skew cyclic codes over $ M_{2} $($ \mathbb{F}_2 $), using the $ \mathbb{F}_4 $-cyclic algebra, is studied in this work. We determine that a skew cyclic code with a polynomial of minimum degree $ d(x) $ is a free code generated by $ d(x) $. According to our findings, skew cyclic codes of odd and even lengths are cyclic and $ 2 $-quasi-cyclic over $ M_{2}(\mathbb{F}_{2}) $, respectively. We provide the self-dual skew condition of Hermitian dual codes of skew cyclic codes. The generator polynomials of Euclidean dual codes are obtained. Furthermore, a spanning set of a double skew cyclic code over $ M_{2}(\mathbb{F}_{2}) $ is considered in this paper.
[1] | T. Abualrub, N. Aydin, P. Seneviratne, On $\theta$-cyclic codes over $\mathbb{F}_{2} + v\mathbb{F}_{2}$, Australas. J. Comb., 54 (2012), 115–126. |
[2] | A. Alahmadi, H. Sboui, P. Solé, O. Yemen, Cyclic codes over ${M}_2(\mathbb{F}_2)$, J. Franklin Inst., 350 (2013), 2837–2847. https://doi.org/10.1016/j.jfranklin.2013.06.023 doi: 10.1016/j.jfranklin.2013.06.023 |
[3] | M. Ashraf, G. Mohammad, On skew cyclic codes over a semi-local ring, Discrete Math. Algorit. Appl., 7 (2015), 1550042. https://doi.org/10.1142/S1793830915500421 doi: 10.1142/S1793830915500421 |
[4] | I. Aydogdu, R. M. Hesari, K. Samei, Double skew cyclic codes over $\mathbb{F}_{q}$, Comput. Appl. Math., 41 (2022), 126. https://doi.org/10.1007/s40314-022-01833-2 doi: 10.1007/s40314-022-01833-2 |
[5] | C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Comb. Theory, Ser. A, 78 (1997), 92–119. https://doi.org/10.1006/jcta.1996.2763 doi: 10.1006/jcta.1996.2763 |
[6] | S. Bagheri, R. M. Hesari, H. Rezaei, K. Samei, Skew cyclic codes of length $p^{s}$ over $\mathbb{F}_{p^{m}} + u\mathbb{F}_{p^{m}}$, Iran. J. Sci. Technol. Trans. Sci., 46 (2022), 1469–1475. https://doi.org/10.1007/s40995-022-01352-z doi: 10.1007/s40995-022-01352-z |
[7] | S. Bhowmick, S. Bagchi, R. Bandi, Self-dual cyclic codes over ${M}_2(\mathbb{Z}_4)$, Discuss. Math.-Gen. Algebra Appl., 42 (2022), 349–362. https://doi.org/10.7151/dmgaa.1395 doi: 10.7151/dmgaa.1395 |
[8] | A. Bonnecaze, P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_{2} + u\mathbb{F}_{2}$, IEEE Trans. Inf. Theory, 45 (1999), 1250–1255. https://doi.org/10.1109/18.761278 doi: 10.1109/18.761278 |
[9] | D. Boucher, W. Geiselmann, F. Ulmer, Skew-cyclic codes, Appl. Algebra Eng. Commun. Comput., 18 (2007), 379–389. https://doi.org/10.1007/s00200-007-0043-z doi: 10.1007/s00200-007-0043-z |
[10] | D. Boucher, P. Solé, F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273–292. https://doi.org/10.3934/amc.2008.2.273 doi: 10.3934/amc.2008.2.273 |
[11] | Q. H. Dinh, A. Gaur, P. Kumar, M. K. Singh, A. K. Singh, Cyclic codes over rings of matrices, Adv. Math. Commun., 2022. https://doi.org/10.3934/amc.2022073 doi: 10.3934/amc.2022073 |
[12] | Q. H. Dinh, S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory, 50 (2004), 1728–1744. https://doi.org/10.1109/TIT.2004.831789 doi: 10.1109/TIT.2004.831789 |
[13] | J. Gao, Skew cyclic codes over $\mathbb{F}_{p} + v\mathbb{F}_{p}$, J. Appl. Math. Inf., 31 (2013), 337–342. https://doi.org/10.14317/jami.2013.337 doi: 10.14317/jami.2013.337 |
[14] | J. Gao, X. Meng, F. Fu, Weight distribution of double cyclic codes over Galois rings, Des. Codes Cryptogr., 90 (2022), 2529–2549. https://doi.org/10.1007/s10623-021-00914-3 doi: 10.1007/s10623-021-00914-3 |
[15] | F. Gursoy, I. Siap, B. Yildiz, Construction of skew cyclic codes over $\mathbb{F}_q + v\mathbb{F}_{q}$, Adv. Math. Commun., 8 (2014), 313–322. https://doi.org/10.3934/amc.2014.8.313 doi: 10.3934/amc.2014.8.313 |
[16] | H. Islam, O. Prakash, D. Bhunia, On the structure of cyclic codes over ${M}_2(\mathbb{F}_p+u\mathbb{F}_p)$, Indian J. Pure Appl. Math., 53 (2022), 153–161. https://doi.org/10.1007/s13226-021-00014-x doi: 10.1007/s13226-021-00014-x |
[17] | S. Jitman, S. Ling, P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39–63. https://doi.org/10.3934/amc.2012.6.39 doi: 10.3934/amc.2012.6.39 |
[18] | R. Luo, U. Parampalli, Cyclic codes over ${M}_2(\mathbb{F}_2+u\mathbb{F}_2)$, Cryptogr. Commun., 10 (2018), 1109–1117. https://doi.org/10.1007/s12095-017-0266-1 doi: 10.1007/s12095-017-0266-1 |
[19] | J. Pal, S. Bhowmick, S. Bagchi, Cyclic codes over ${M}_4(\mathbb{F}_2)$, J. Appl. Math. Comput., 60 (2019), 749–756. https://doi.org/10.1007/s12190-018-01235-w doi: 10.1007/s12190-018-01235-w |
[20] | S. Patel, O. Prakash, H. Islam, Cyclic codes over $M_{4}(\mathbb{F}_{2}+ u\mathbb{F}_{2})$, Cryptogr. Commun., 14 (2022), 1021–1034. https://doi.org/10.1007/s12095-022-00572-9 doi: 10.1007/s12095-022-00572-9 |
[21] | O. Prakash, S. Patel, Skew cyclic codes over $\mathbb{F}_{q}[u, v, w]/\langle u^{2}-1, v^{2}-1, w^{2}-1, uv-vu, vw-wv, wu-uw \rangle$, Discrete Math. Algorit. Appl., 14 (2022), 2150113. https://doi.org/10.1142/S1793830921501135 doi: 10.1142/S1793830921501135 |
[22] | M. Shi, T. Yao, A. Alahmadi, P. Solé, Skew cyclic codes over $\mathbb{F}_{q} + v\mathbb{F}_{q} + v^{2}\mathbb{F}_{q}$, IEICE T. Fund. Electr., Commun. Comput. Sci., 98 (2015), 1845–1848. https://doi.org/10.1587/transfun.E98.A.1845 doi: 10.1587/transfun.E98.A.1845 |
[23] | M. Shi, P. Solé, Skew cyclic codes over $\mathbb{F}_{q} + v\mathbb{F}_{q} + \cdots + v^{m-1}\mathbb{F}_{q}$, Proceedings International Workshop on the Arithmetic of Finite Fields, 2015. |
[24] | M. Shi, T. Yao, P. Solè, Skew cyclic codes over a non-chain ring, Chin. J. Electron., 26 (2017), 544–547. https://doi.org/10.1049/cje.2017.03.008 doi: 10.1049/cje.2017.03.008 |
[25] | I. Siap, T. Abualrub, N. Aydin, P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory, 2 (2011), 10–20. https://doi.org/10.1504/IJICOT.2011.044674 doi: 10.1504/IJICOT.2011.044674 |
[26] | J. A. Wood, Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc., 136 (2008), 699–706. https://doi.org/10.1090/S0002-9939-07-09164-2 doi: 10.1090/S0002-9939-07-09164-2 |